作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
随着信息技术的飞速发展,图像信息安全面临严峻挑战。本文提出一种基于 DNA 计算、混沌系统和哈希函数的混合图像加密模型。通过 DNA 计算对图像数据进行编码转换,利用混沌系统的随机性和遍历性生成加密密钥与置乱序列,结合哈希函数的单向性和雪崩效应增强加密的安全性与抗攻击性。详细设计加密和解密流程,并通过仿真实验与安全性分析,验证该混合模型在加密效率、密钥空间、抗统计攻击、抗差分攻击等方面的优异性能,为图像信息安全提供了一种高效、可靠的新途径。
关键词
DNA 计算;混沌系统;哈希函数;图像加密;混合模型;信息安全
一、引言
在当今数字化时代,图像作为信息传播的重要载体,广泛应用于多媒体通信、医学影像、军事侦察等众多领域。然而,图像数据的公开传输和存储使其面临着被窃取、篡改等安全风险,因此图像加密技术成为保障图像信息安全的关键手段。传统的图像加密方法,如对称加密算法和非对称加密算法,在处理大数据量图像时存在加密效率低、安全性不足等问题,难以满足日益增长的图像信息安全需求。
DNA 计算以其超高的存储密度、强大的并行计算能力和独特的生物特性,为信息加密提供了新的思路;混沌系统具有对初始条件敏感、随机性强、遍历性好等特点,能够生成复杂的混沌序列用于加密;哈希函数则凭借单向性、雪崩效应和定长输出特性,可有效验证数据完整性和增强加密安全性。将这三种技术相结合,构建混合加密模型,有望充分发挥各自优势,提高图像加密的性能。本文开展基于 DNA 计算、混沌系统和哈希函数混合模型的图像加密研究,旨在探索一种高效、安全的图像加密新方法。
二、DNA 计算、混沌系统和哈希函数原理
2.1 DNA 计算原理
2.2 混沌系统原理
2.3 哈希函数原理
哈希函数是一种将任意长度的输入数据映射为固定长度输出值(哈希值)的函数。它具有单向性,即从哈希值难以反推出原始数据;雪崩效应,即输入数据的微小变化会导致哈希值的巨大变化;以及定长输出特性。在图像加密中,哈希函数可用于计算图像的哈希值,作为图像的数字指纹,用于验证图像在传输和存储过程中是否被篡改。同时,将哈希函数与 DNA 计算、混沌系统结合,可增强加密算法的安全性,例如通过对密钥或加密中间结果计算哈希值,用于进一步的加密操作或验证。
三、基于混合模型的图像加密算法设计
3.1 加密流程
3.2 解密流程
四、结论
本文提出的基于 DNA 计算、混沌系统和哈希函数的混合图像加密模型,充分融合了三种技术的优势,通过仿真实验和安全性分析,验证了该模型在加密效果、加密效率和安全性方面的优异性能。该模型具有较大的密钥空间、良好的抗统计攻击和抗差分攻击能力,能够为图像信息安全提供可靠保障。未来的研究可以进一步优化算法,提高加密效率,探索该混合模型在其他领域的应用,如视频加密、云存储安全等,以适应不断发展的信息安全需求。
⛳️ 运行结果
🔗 参考文献
[1] 张慧奔.基于混沌图像加密算法的研究[D].电子科技大学[2025-05-30].DOI:10.7666/d.D665125.
[2] 樊春霞,姜长生.一种基于混沌映射的图像加密算法[J].光学精密工程, 2004, 12(2).DOI:10.3321/j.issn:1004-924X.2004.02.011.
[3] 房东鑫.基于混沌映射和DNA编码的图像加密算法[D].东北林业大学,2015.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇