【VMD-LSTM】变分模态分解-长短时记忆神经网络研究附Python代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

一、引言

在信号处理和时间序列分析领域,如何从复杂数据中提取有效信息并进行准确预测一直是研究热点。长短时记忆神经网络(Long Short-Term Memory,LSTM)作为一种特殊的循环神经网络(RNN),能够有效处理长序列数据,解决传统 RNN 存在的梯度消失和梯度爆炸问题,在时间序列预测、自然语言处理等众多领域得到广泛应用 。然而,当面对含有复杂噪声、多频率成分叠加的非平稳数据时,LSTM 的预测性能可能会受到影响。变分模态分解(Variational Mode Decomposition,VMD)是一种新型的自适应信号分解方法,能够将复杂信号分解为若干个具有不同中心频率的本征模态函数(Intrinsic Mode Functions,IMF),有效分离信号中的不同成分。将 VMD 与 LSTM 相结合,先利用 VMD 对原始数据进行预处理,再通过 LSTM 进行建模预测,能够充分发挥二者优势,提高对复杂数据的处理能力和预测精度。研究 VMD - LSTM 模型对于拓展时间序列分析方法、提升数据处理效果具有重要意义。

二、变分模态分解(VMD)原理

2.1 基本概念

变分模态分解是一种基于变分原理的自适应信号分解方法,其核心思想是将复杂信号分解为一系列有限带宽的模态分量 。VMD 通过构建和求解变分模型,将原始信号分解为多个本征模态函数(IMF),每个 IMF 都具有特定的中心频率和带宽,且这些 IMF 的叠加能够重构原始信号。与传统的信号分解方法(如经验模态分解,EMD)相比,VMD 不存在模态混叠问题,分解结果更稳定、可靠。

三、长短时记忆神经网络(LSTM)原理

3.1 网络结构

LSTM 网络是在传统 RNN 的基础上进行改进,其核心单元是 LSTM 细胞(Cell) 。每个 LSTM 细胞包含遗忘门(Forget Gate)、输入门(Input Gate)和输出门(Output Gate)三个门控结构,以及细胞状态(Cell State)。遗忘门决定上一时刻细胞状态中哪些信息被保留或遗忘;输入门控制当前输入信息中哪些部分被添加到细胞状态;输出门根据细胞状态和当前输入信息决定 LSTM 细胞的输出。这种独特的门控机制使得 LSTM 能够有效处理长序列数据,选择性地记忆和遗忘信息,避免梯度消失和梯度爆炸问题。

3.2 工作机制

⛳️ 运行结果

📣 部分代码

🔗 参考文献

[1] 黄睿,朱玲俐,高峰,等.基于变分模态分解的卷积长短时记忆网络短期电力负荷预测方法[J].现代电力, 2024(001):041.

[2] 向洪伟,曹馨雨,张丽娟,等.参数优化变分模态分解与LSTM的电力物资需求预测[J].重庆大学学报, 2024, 47(4):127-138.DOI:10.11835/j.issn.1000.582X.2024.04.011.

[3] 张明岳,李丽敏,温宗周.基于变分模态分解和双向长短时记忆神经网络模型的滑坡位移预测[J].山地学报, 2021(006):039.

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值