【任务分配】基于A星算法实现泊松分布到达任务仓库 工厂环境中多机器人在线任务分配附MATLAB 代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

一、引言

随着工业自动化的快速发展,多机器人协同作业在工厂生产中得到广泛应用。在工厂环境下,任务从仓库源源不断产生并分配给机器人执行,如何实现高效的多机器人在线任务分配,直接影响着工厂的生产效率和运营成本 。传统的任务分配方法在面对动态变化的任务流时,往往难以快速做出最优决策。A 星算法作为一种经典的路径规划算法,具有搜索效率高、能找到最优路径的特点,可应用于多机器人任务分配中,帮助机器人规划前往任务仓库执行任务的最优路径。同时,任务到达仓库的过程通常符合泊松分布,这意味着任务到达具有随机性和无记忆性。研究基于 A 星算法实现泊松分布到达任务仓库的多机器人在线任务分配,对于提升工厂自动化水平、优化生产流程具有重要意义。

二、工厂环境与任务场景描述

2.1 工厂环境建模

将工厂环境抽象为二维或三维的空间模型,包含机器人工作区域、任务仓库、障碍物(如固定设备、货架等)以及机器人路径通道 。使用栅格法对工厂环境进行划分,将整个工作空间划分为大小相同的栅格,每个栅格代表一个可通行或不可通行的区域。可通行栅格表示机器人可以移动通过的位置,不可通行栅格则代表障碍物占据的区域。通过这种方式,为机器人的路径规划和任务分配提供统一的环境描述。

2.2 任务到达特性

任务从仓库产生并等待机器人执行,任务到达仓库的时间间隔服从泊松分布 。泊松分布的概率质量函数为:

四、基于 A 星算法的多机器人在线任务分配策略

4.1 任务分配模型

构建多机器人在线任务分配模型,以机器人完成任务的总时间最短或总路径长度最短为目标 。当有新任务到达仓库时,获取所有空闲机器人的位置信息,将任务仓库作为目标节点,分别以每个空闲机器人的当前位置作为起始节点,使用 A 星算法计算机器人到任务仓库的路径长度或预计到达时间。选择路径长度最短或预计到达时间最短的机器人来执行该任务,实现任务的高效分配。

4.2 动态更新机制

由于任务到达具有随机性,且机器人在执行任务过程中状态不断变化,需要建立动态更新机制 。实时监控机器人的任务执行状态(如是否空闲、已执行任务进度等)和任务仓库的任务队列情况。当有新任务到达或机器人完成任务变为空闲时,立即触发任务重新分配流程,再次使用 A 星算法进行任务分配,确保在动态环境下始终能做出最优的任务分配决策。

4.3 冲突避免策略

在多机器人同时执行任务过程中,可能会出现路径冲突的情况。为避免冲突,在任务分配和路径规划时,考虑机器人的运动时间和空间占用 。可以采用时间窗口法,为每个机器人分配特定的时间窗口,使其在该时间窗口内通过可能产生冲突的区域;或者在路径规划阶段,通过调整路径或插入等待动作,确保机器人之间不会发生碰撞

⛳️ 运行结果

📣 部分代码

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值