✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
一、引言
随着工业自动化的快速发展,多机器人协同作业在工厂生产中得到广泛应用。在工厂环境下,任务从仓库源源不断产生并分配给机器人执行,如何实现高效的多机器人在线任务分配,直接影响着工厂的生产效率和运营成本 。传统的任务分配方法在面对动态变化的任务流时,往往难以快速做出最优决策。A 星算法作为一种经典的路径规划算法,具有搜索效率高、能找到最优路径的特点,可应用于多机器人任务分配中,帮助机器人规划前往任务仓库执行任务的最优路径。同时,任务到达仓库的过程通常符合泊松分布,这意味着任务到达具有随机性和无记忆性。研究基于 A 星算法实现泊松分布到达任务仓库的多机器人在线任务分配,对于提升工厂自动化水平、优化生产流程具有重要意义。
二、工厂环境与任务场景描述
2.1 工厂环境建模
将工厂环境抽象为二维或三维的空间模型,包含机器人工作区域、任务仓库、障碍物(如固定设备、货架等)以及机器人路径通道 。使用栅格法对工厂环境进行划分,将整个工作空间划分为大小相同的栅格,每个栅格代表一个可通行或不可通行的区域。可通行栅格表示机器人可以移动通过的位置,不可通行栅格则代表障碍物占据的区域。通过这种方式,为机器人的路径规划和任务分配提供统一的环境描述。
2.2 任务到达特性
任务从仓库产生并等待机器人执行,任务到达仓库的时间间隔服从泊松分布 。泊松分布的概率质量函数为:
四、基于 A 星算法的多机器人在线任务分配策略
4.1 任务分配模型
构建多机器人在线任务分配模型,以机器人完成任务的总时间最短或总路径长度最短为目标 。当有新任务到达仓库时,获取所有空闲机器人的位置信息,将任务仓库作为目标节点,分别以每个空闲机器人的当前位置作为起始节点,使用 A 星算法计算机器人到任务仓库的路径长度或预计到达时间。选择路径长度最短或预计到达时间最短的机器人来执行该任务,实现任务的高效分配。
4.2 动态更新机制
由于任务到达具有随机性,且机器人在执行任务过程中状态不断变化,需要建立动态更新机制 。实时监控机器人的任务执行状态(如是否空闲、已执行任务进度等)和任务仓库的任务队列情况。当有新任务到达或机器人完成任务变为空闲时,立即触发任务重新分配流程,再次使用 A 星算法进行任务分配,确保在动态环境下始终能做出最优的任务分配决策。
4.3 冲突避免策略
在多机器人同时执行任务过程中,可能会出现路径冲突的情况。为避免冲突,在任务分配和路径规划时,考虑机器人的运动时间和空间占用 。可以采用时间窗口法,为每个机器人分配特定的时间窗口,使其在该时间窗口内通过可能产生冲突的区域;或者在路径规划阶段,通过调整路径或插入等待动作,确保机器人之间不会发生碰撞
⛳️ 运行结果
📣 部分代码
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类