作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
扭曲和盘绕(T&C)致动器是一种新兴的智能材料驱动结构,凭借其显著的功率重量比、高应变能力和制造的简易性,在软体机器人、可穿戴设备和生物医学应用等领域展现出巨大的潜力。理解和预测这些致动器的复杂力学行为对于其设计、控制和优化至关重要。本文深入探讨了基于物理的模型在模拟 T&C 致动器中的应用,重点介绍了 Cosserat 杆理论作为一种强大的工具。Cosserat 杆理论能够捕捉结构的弯曲、拉伸、剪切和扭转耦合,从而提供了对 T&C 致动器响应的更准确描述,而这是传统的欧拉-伯努利或梁理论难以实现的。本文将首先概述 T&C 致动器的工作原理和力学特性,接着详细阐述 Cosserat 杆理论的基本原理及其在 T&C 致动器建模中的适用性。随后,将讨论基于 Cosserat 杆理论的建模方法和数值实现,并探讨该模型在预测 T&C 致动器各种行为(如力-位移关系、频率响应和失稳模式)中的应用。最后,将总结当前的研究进展,并对未来的研究方向进行展望。
引言
随着软体机器人和功能材料的快速发展,对能够实现复杂运动和提供高功率输出的轻量化致动器的需求日益增长。扭曲和盘绕(T&C)致动器,通常由聚合物纤维、碳纳米管或肌肉纤维等材料通过巧妙的扭曲和盘绕工艺制成,正是满足这一需求的杰出代表。它们通过热、电、光或湿度的刺激,表现出显著的长度收缩和扭转变形,从而产生机械功。与传统的刚性致动器相比,T&C 致动器具有固有的柔韧性、可变形性以及与环境的良好交互能力,使其在许多新兴领域具有独特的优势。
然而,T&C 致动器的力学行为是高度非线性和耦合的。其复杂的几何形状、材料的各向异性以及刺激引起的相变或结构变化都对对其行为进行精确建模提出了挑战。传统的梁理论,例如欧拉-伯努利梁理论,忽略了横向剪切变形和截面扭转变形的耦合效应,因此无法准确捕捉 T&C 致动器在承受大变形和复杂载荷时的响应。鉴于 T&C 致动器的独特结构特性——即由细长的纤维通过扭曲和盘绕形成,具有显著的弯曲、扭转和拉伸变形,并存在强烈的这些变形模式之间的耦合——采用能够全面描述这些效应的理论框架变得至关重要。
Cosserat 杆理论,也被称为微极杆理论或定向杆理论,正是这样一种强大的工具。它将杆的横截面视为具有独立的旋转自由度,而不仅仅是附属于杆的中心线。这使得 Cosserat 杆理论能够更准确地描述杆的弯曲、拉伸、剪切和扭转变形及其之间的耦合效应。这种能力对于准确建模 T&C 致动器的复杂力学行为至关重要,因为其扭曲和盘绕的结构本质上导致了这些变形模式之间的强耦合。
本文旨在探讨使用 Cosserat 杆理论构建基于物理的模型来模拟 T&C 致动器的可行性和优势。我们将首先介绍 T&C 致动器的工作原理和典型的力学特性。随后,详细阐述 Cosserat 杆理论的基本原理及其相对于传统梁理论的优势。接下来,我们将讨论如何将 T&C 致动器的材料特性和几何结构纳入 Cosserat 杆模型中,并介绍相关的数值求解方法。最后,将通过回顾现有的研究成果来展示 Cosserat 杆模型在预测 T&C 致动器行为方面的有效性,并展望未来的研究方向,包括模型的高级扩展和与实验的进一步验证。
二、扭曲和盘绕致动器的工作原理和力学特性
T&C 致动器通常由一根或多根纤维经过特定的预扭和预盘绕工艺制成。以聚合物纤维为例,常见的制备方法是将纤维进行多次扭转,然后将其加热或浸入溶剂中以固定其结构。在某些情况下,还会将多根预扭的纤维进一步缠绕在一起形成更复杂的结构。
其工作原理主要依赖于材料在受到刺激时产生的体积或长度变化,这种变化由于预先存在的扭曲和盘绕结构而被转化为宏观的长度收缩和扭转变形。例如,热刺激可以导致聚合物纤维的收缩,这种收缩在扭曲和盘绕结构中被放大,从而引起显著的轴向收缩和相应的扭转。这种变形能力是 T&C 致动器能够产生机械功的关键。
T&C 致动器的力学特性表现出显著的非线性和耦合性。主要特性包括:
- 大变形能力:
T&C 致动器通常能够实现高达其原始长度数倍的收缩率和大幅度的扭转变形。
- 力-位移关系:
输出力与位移之间通常呈现非线性关系,这与材料本身的非线性行为以及结构的大变形有关。
- 能量密度和功率输出:
T&C 致动器具有较高的能量密度和功率输出,使其成为许多应用的理想选择。
- 滞回现象:
在周期性刺激下,T&C 致动器可能表现出滞回现象,即其响应依赖于加载历史。
- 频率响应:
T&C 致动器的响应速度受到材料特性、几何尺寸和刺激频率的影响。
- 失稳行为:
在某些载荷条件下,T&C 致动器可能会发生屈曲或扭转失稳。
准确预测这些复杂行为对于 T&C 致动器的设计和控制至关重要。传统的建模方法,例如仅基于欧拉-伯努利梁理论的模型,由于无法捕捉横截面的扭转变形和剪切变形及其与轴向和弯曲变形的耦合,难以精确描述 T&C 致动器在大变形下的响应。
三、Cosserat 杆理论的基本原理
Cosserat 杆理论是连续介质力学中对一维结构(即杆或梁)进行建模的一种高级理论。与传统的欧拉-伯努利梁理论将杆的横截面视为刚性平面并仅描述其中线上各点的位移不同,Cosserat 杆理论考虑了横截面具有独立的旋转自由度。这意味着在 Cosserat 理论中,杆的任意一点不仅有平移速度,还有旋转速度,从而描述了杆横截面的局部运动。
相对于传统梁理论,Cosserat 杆理论的主要优势在于其能够:
- 捕捉横向剪切变形:
传统欧拉-伯努利理论忽略了剪切变形。
- 捕捉扭转变形及其耦合:
能够准确描述扭转角及其与弯曲、拉伸的耦合。
- 描述大变形和旋转:
在大位移和大转角情况下仍然适用。
- 处理复杂截面:
能够更灵活地处理非对称或具有复杂内部结构的截面。
- 包含微结构效应:
在某些扩展形式中,可以包含材料的微结构特性。
对于 T&C 致动器而言,其扭曲和盘绕的几何结构导致了显著的拉伸、弯曲和扭转变形以及它们之间的强耦合。Cosserat 杆理论通过引入横截面的独立旋转和包含耦合项的本构关系,能够自然地描述这些现象,从而为准确建模 T&C 致动器的力学行为提供了坚实的基础。
四、基于 Cosserat 杆理论的 T&C 致动器建模方法
将 Cosserat 杆理论应用于 T&C 致动器的建模需要考虑其独特的几何结构和材料特性。建模过程通常包括以下几个关键步骤:
-
建立 Cosserat 杆模型框架: 将 T&C 致动器的中心线表示为一条 Cosserat 杆的中心线。需要确定一个合适的参考构形,例如致动器处于未刺激时的构形。
-
定义材料本构关系: 这是建模的核心环节。T&C 致动器的材料通常是各向异性且可能表现出非线性行为。刺激引起的变形可以建模为材料的本征应变,或者通过改变材料的弹性模量来反映。
- 材料参数变化:
刺激可能导致材料弹性模量或其他本构参数发生变化。这需要建立本构参数与刺激强度之间的关系。
-
- 几何-材料耦合:
T&C 致动器的宏观力学行为与其微观结构(纤维的直径、扭转角、盘绕角等)密切相关。Cosserat 杆的本构参数(如拉伸刚度、弯曲刚度、扭转刚度以及耦合刚度)需要根据纤维的材料属性和致动器的几何构型来推导。这通常需要结合微观力学分析或均匀化方法。例如,可以从单根扭曲纤维的弹性性质出发,通过考虑盘绕结构中纤维之间的相互作用来建立宏观 Cosserat 杆的有效本构参数。这种方法能够反映几何参数(如扭转密度和盘绕密度)对宏观力学性能的影响。
- 刺激响应:
刺激(如温度变化)可以通过两种主要方式纳入模型:
- 几何-材料耦合:
-
施加边界条件和载荷: 根据具体的应用场景,需要施加相应的边界条件(如固定、自由或约束运动)和外部载荷(如轴向力、弯矩、扭矩)。
-
建立控制方程: 将 Cosserat 杆的运动学、动力学和本构关系结合起来,形成描述致动器变形的偏微分方程组。这些方程通常是高度非线性的,尤其是当考虑大变形和非线性材料行为时。
-
数值求解: 由于控制方程的复杂性,通常需要采用数值方法进行求解。常用的数值方法包括:
- 有限差分法:
将杆沿其长度方向离散化,并将偏微分方程转化为差分方程组进行求解。
- 有限元法:
将杆离散为有限个单元,并在每个单元内进行插值,将控制方程转化为代数方程组进行求解。这对于处理复杂边界条件和非均匀材料分布较为有利。
- 离散弹性杆方法 (Discrete Elastic Rods, DER):
这是一种基于离散化的方法,将 Cosserat 杆表示为一系列刚体段和连接它们的弹簧和阻尼器。这种方法直观且易于实现,特别适用于模拟动态行为和大变形。DER 模型可以直接在离散层面上定义杆段之间的相对位移和旋转,并建立相应的弹性和阻尼力矩。
- 基于构形空间的数值方法:
一些方法直接在 Cosserat 杆的构形空间(由中心线位置和截面方向组成)中进行优化或积分,以找到平衡构形或模拟动态过程。
- 有限差分法:
-
结果分析和验证: 对数值求解得到的结果进行分析,例如提取力-位移曲线、扭转角-位移曲线、应力分布等,并与实验数据进行比较验证。
在实际建模过程中,选择合适的本构模型和数值方法取决于所需的精度、计算效率以及可用的实验数据。对于 T&C 致动器的复杂耦合行为,Cosserat 杆理论的引入使得构建能够捕捉这些特性的基于物理的模型成为可能。
五、基于 Cosserat 杆理论的 T&C 致动器行为预测
基于 Cosserat 杆理论的模型为预测 T&C 致动器的各种行为提供了强大的工具。通过求解控制方程,可以模拟致动器在不同刺激和载荷下的响应,并深入理解其力学机制。以下是一些基于 Cosserat 杆模型的典型应用:
- 力-位移关系和扭转-位移关系预测:
这是最基本的预测。通过施加不同的位移或力,计算相应的反作用力或位移。由于 Cosserat 杆理论包含了拉伸、弯曲、扭转和剪切的耦合,模型能够更准确地预测在大变形和复杂载荷下的非线性力-位移和扭转-位移曲线,而这些曲线是设计和控制致动器的重要依据。
- 失稳分析:
T&C 致动器在受压或受扭时可能发生屈曲或扭转失稳。Cosserat 杆模型能够通过分析控制方程的稳定性来预测失稳载荷和失稳模式。这对于避免致动器在工作过程中发生意外的失稳行为至关重要。
- 动态响应预测:
对于需要快速响应或在动态环境下工作的 T&C 致动器,了解其频率响应和动态特性非常重要。Cosserat 杆的动力学方程可以用于模拟致动器在时变载荷或刺激下的动态行为,预测其固有频率、阻尼特性和对不同频率输入的响应。这对于设计高带宽的致动器或实现精确的运动控制至关重要。
- 能量转换效率分析:
基于物理的模型可以用于分析 T&C 致动器的能量转换过程,例如热能到机械能的转换效率。通过计算刺激输入的能量和致动器输出的机械功,可以评估其能量利用效率,并为优化设计提供指导。
- 结构优化:
Cosserat 杆模型可以作为结构优化的工具。通过改变致动器的几何参数(如纤维直径、扭转角、盘绕角等)或材料参数,并在模型中进行模拟,可以寻找能够实现特定性能指标(如最大输出力、最大收缩率、最快响应速度等)的最优设计。
- 复杂运动模拟:
T&C 致动器可以被用于构建复杂的机器人结构。基于 Cosserat 杆的模型可以用于模拟这些多自由度系统的运动,预测其在不同控制输入下的构形和力学行为。这对于机器人系统的设计、规划和控制具有重要意义。
值得注意的是,基于 Cosserat 杆理论的模型需要准确的材料本构参数和几何参数输入。这些参数通常需要通过实验测量或结合微观力学分析来确定。此外,模型的计算复杂度可能较高,尤其是在模拟复杂的几何结构、非线性材料或动态过程时。然而,随着计算能力的提升和数值算法的改进,基于 Cosserat 杆理论的高精度模拟正变得越来越可行。
通过与实验结果的对比验证,基于 Cosserat 杆的模型可以不断得到完善和校准,从而提高其预测的准确性和可靠性。
六、研究进展和未来展望
近年来,基于 Cosserat 杆理论对 T&C 致动器进行建模的研究取得了一些重要进展。研究人员已经成功地利用 Cosserat 杆模型预测了 T&C 致动器的非线性力-位移行为、扭转-位移耦合以及屈曲失稳。一些研究工作还探索了如何将刺激引起的材料变化(例如热膨胀)纳入 Cosserat 杆框架中,从而模拟热驱动 T&C 致动器的响应。
基于离散弹性杆 (DER) 的方法在模拟 T&C 致动器的动态行为和与环境的交互方面显示出了潜力。DER 模型能够自然地处理接触和碰撞,这对于模拟软体机器人应用中的 T&C 致动器至关重要。
然而,基于 Cosserat 杆理论的 T&C 致动器建模仍存在一些挑战和未来的研究方向:
- 更精确的材料本构模型:
现有的研究多采用线弹性 Cosserat 杆模型,这可能不足以捕捉 T&C 致动器在承受大变形和循环加载时的非线性和粘弹性行为。开发更先进的非线性、粘弹性或形状记忆聚合物材料的 Cosserat 本构模型是未来的重要方向。
- 考虑纤维间相互作用:
在一些 T&C 致动器中,纤维之间的摩擦和接触对其整体力学行为有显著影响。将这些复杂的纤维间相互作用纳入宏观的 Cosserat 杆模型中是一个挑战。可能需要结合多尺度建模方法,将微观尺度的纤维行为耦合到宏观的 Cosserat 杆模型中。
- 多物理场耦合:
T&C 致动器的驱动通常涉及多物理场耦合,例如热-力耦合、电-力耦合或湿-力耦合。将这些多物理场效应完整地纳入 Cosserat 杆框架中需要开发耦合的本构关系和控制方程。
- 模型的计算效率:
尽管 Cosserat 杆模型提供了高精度,但其计算成本可能较高,特别是在模拟复杂的机器人系统或进行实时控制时。开发更高效的数值算法或模型降阶技术是必要的。
- 模型与实验的紧密结合:
为了提高模型的准确性和可靠性,需要加强模型预测与实验测量的对比和验证。开发新的实验技术来测量 T&C 致动器的局部变形和应力是重要的。
- 应用于复杂结构和系统:
将基于 Cosserat 杆理论的 T&C 致动器模型集成到更复杂的软体机器人或可变形结构的模拟框架中,以实现对整个系统的精确预测和控制。
克服这些挑战将进一步提高基于 Cosserat 杆理论的模型在理解、设计和控制 T&C 致动器方面的能力,从而推动其在各种应用领域的实际部署。
七、结论
本文探讨了使用 Cosserat 杆理论对扭曲和盘绕致动器进行建模的基于物理的方法。Cosserat 杆理论凭借其捕捉结构的弯曲、拉伸、剪切和扭转耦合的能力,为准确描述 T&C 致动器复杂的力学行为提供了强大的框架。通过将 T&C 致动器的独特几何结构和材料特性纳入 Cosserat 杆模型中,并采用合适的数值方法进行求解,可以有效地预测其力-位移关系、失稳行为和动态响应。
与传统的梁理论相比,Cosserat 杆理论能够更全面地反映 T&C 致动器的固有力学特性,特别是在大变形和存在显著耦合效应的情况下。基于 Cosserat 杆的模型在理解 T&C 致动器的工作原理、优化其结构设计以及开发先进的控制策略方面具有重要的价值。
未来的研究应致力于开发更精确的材料本构模型、考虑复杂的纤维间相互作用和多物理场耦合效应,并提高模型的计算效率。通过不断完善基于 Cosserat 杆理论的模型并加强与实验的结合,我们将能够更深入地理解和更好地利用 T&C 致动器这一具有巨大潜力的新型智能结构。基于物理的模型,特别是基于 Cosserat 杆理论的模型,将继续在推动 T&C 致动器的研究和应用中发挥关键作用。
⛳️ 运行结果
🔗 参考文献
[1] 张磊,李冬伟,杨朝舒,等.开关阀用超磁致伸缩致动器磁场及伸长量的仿真分析[J].机床与液压, 2014, 42(7):5.DOI:10.3969/j.issn.1001-3881.2014.07.027.
[2] 王茂方,杨静.基于磁致伸缩致动器的车削振动控制系统研究[J].西安理工大学学报, 2014, 30(4):4.DOI:10.3969/j.issn.1006-4710.2014.04.016.
[3] 刘丽双.双金属热致动器的设计与仿真[J].中北大学学报, 2008.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇