Chat-REC: Towards Interactive and Explainable LLMs-Augmented Recommender System

本文探讨了推荐系统中存在的问题,如缺乏交互性和可解释性,以及如何通过Chat-Rec改进,利用用户画像和上下文学习进行无监督推荐。此外,文章介绍了如何处理冷启动问题和实现跨域推荐,以及在实验中对Chat-Rec进行的Top-k推荐和零-shot任务评估。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、动机

推荐系统被应用于推荐服务,提高人们的生活质量,但仍存在一些问题。缺少交互性、可解释性,缺乏反馈机制,以及冷启动和跨域推荐。

Chat-Rec 将用户画像和历史交互转换为 Prompt,有效地学习用户的偏好,不需要训练,完全依赖于上下文学习,有效推理出用户和产品之间之间的联系。

产品之间用户偏好相关联,允许更好的跨域产品推荐。

2、具体框架

用户与物品的历史交互、用户档案、用户查询和对话历史作为输入,并与推荐系统R接口。如果任务被确定为推荐任务,该模块使用 R 来生成一个候选项目集。

传统的推荐系统经过排序产生一个产品候选集,llm根据对候选集中的产品进一步的排序,给出最终更小、更相关的物品集。

chat-rec推荐案例,截图2,左图是引入了用户信息的chat-rec系统,能够根据用户的行为给出相应的推荐理由,右图则没有

3、冷启问题

新产品缺少用户交互,预先用互联网上的信息进行训练的 LLMs 实际上可以作为多视角的知识库,通过llm获取新产品的嵌入表征并存储,提高新产品的展示机会,提供用户更好的展示。

4、跨域推荐

预先用互联网上的信息进行训练的 LLMs 实际上可以作为多视角的知识库,不同产品会有一些共性,llm可以通过对某一产品的喜好,推演到其他产品的上面。

5、实验

数据集是 MovieLens 100K,随机筛选了 200 个用户组成数据集

Chat-Rec 可以根据用户偏好进一步优化推荐系统推荐的候选集

Top-k推荐任务评估对比

zero-shot任务评估对比

不同的temperature下,随机给出候选和经过排序给出候选差异很大。先经过推荐系统排序筛选候选很重要。

6、参考文献

【1】https://arxiv.org/pdf/2303.14524.pdf

【2】Chat-REC: 当推荐系统遇上 ChatGPT, 会发生什么奇妙反应? - 知乎

### AI-Native Memory 的定义与发展 AI-native memory 是指一种专为人工智能设计的记忆机制,它不仅能够存储大量的数据,还能支持复杂的推理、学习以及动态更新。这种记忆形式超越了传统的大语言模型(LLMs)所依赖的静态参数化结构,而是更接近于人类的认知记忆体系[^1]。 #### LLMs 中的记忆特性 在现有的大型语言模型中,“记忆”主要体现在两个方面:一是预训练阶段的数据吸收;二是上下文窗口内的短期记忆能力。然而,这些方法存在局限性——它们无法长期保存特定信息或灵活调整已有的知识库。当讨论从LLMs向AGI过渡时,构建一个可以持续积累经验并有效调用的历史记录系统变得至关重要[^2]。 #### AGI 对记忆的需求 为了实现真正意义上的通用智能(AGI),需要开发出具有以下特性的新型记忆架构: - **持久性和适应性**: 能够长时间保留重要信息的同时不断纳入新知; - **关联检索功能**: 支持快速找到与当前情境最相关的过往经历片段; - **跨模态整合能力**: 不仅限于文字资料,还应涵盖图像、声音等多种感官输入形式[^3]。 这样的高级别记忆框架将允许未来的AI agents更好地理解世界,并作出更为精准恰当的行为选择。 ```python class AIMemorySystem: def __init__(self): self.long_term_memory = {} self.short_term_context = [] def store(self, data, type='short'): if type == 'long': self.long_term_memory.update(data) elif type == 'short': self.short_term_context.append(data) def retrieve(self, query): results = [] for key in self.long_term_memory.keys(): if query in key: results.append((key,self.long_term_memory[key])) return results # Example Usage memory_system = AIMemorySystem() memory_system.store({"fact":"The capital of France is Paris."},type="long") print(memory_system.retrieve("France")) ``` 上述代码展示了一个简单的模拟版本的人工智能记忆系统的类定义及其基本操作函数。 ### 结论 综上所述,在通往AGI的路上,创建和完善AI-native memory将是不可或缺的一环。这一步骤旨在克服现有技术瓶颈,使机器拥有类似于甚至优于人类的学习进化潜力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值