1.引言
近年来,基于深度学习的解决方案在图像增强领域取得了成功。本文介绍了LYT-Net,即轻量级YUV Transformer 网络,作为一种新的低光图像增强方法。所提出的架构与传统的基于Retinex的模型不同,它利用YUV颜色空间对亮度(Y)和色度(U和V)的自然分离,简化了在图像中分离光和颜色信息的复杂任务。通过利用 Transformer 捕捉长距离依赖关系的优势,LYT-Net在保持降低模型复杂性的同时,确保了对图像的全面上下文理解。通过采用一种新颖的混合损失函数,LYT-Net在低光图像增强数据集上取得了最先进的结果,同时其体积比其他方法小得多。
源代码和预训练模型:https://github.com/albrateanu/LYT-Net
2. 概述
低光照图像增强(LLIE)是计算机视觉(CV)领域的一个重要且具有挑战性的任务。在低光照条件下捕获图像会显著降低其质量,导致细节和对比度的丧失。这种退化不仅会导致主观上不愉快的视觉体验,还会影响许多CV系统的性能。LLIE的目标是在提高可见度和对比度的同时,恢复暗环境中固有的各种失真。
低光照条件指的是环境场景中的光照水平低于实现最佳可见性的标准要求。然而,在实际应用中,到目前为止,还无法确定特定的理论值来明确界定低光照环境。因此,对于识别和量化构成低光照条件的标准,尚未有统一的规定。
LLIE在各种计算机视觉任务中发挥着重要作用,如特征提取或基于内容的识别。此外,它还是更复杂系统在诸如医学成像、移动遥感、视频监控系统等不同领域中一个关键步骤。
LLIE解决方案随着卷积神经网络(CNN)的发展而进步,所提出的解决方案主要分为两类。第一类是直接使用CNN将低光照图像映射到正常光照的等价图像,这种方法通常忽略了人类对颜色的感知,并且在理论解释性上有所缺乏。第二类,受到Retinex理论的启发,采用更为复杂的多阶段训练流程,使用不同的CNN执行诸如分解彩色图像、去噪反射率和调整光照等任务。尽管这种方法与理论模型更为一致,但其复杂性以及需要多个训练阶段带来了显著的挑战。
在本文中,作者提出了一种基于T