LYT-Net——轻量级YUV Transformer 网络低光照条件图像修复

1.引言

近年来,基于深度学习的解决方案在图像增强领域取得了成功。本文介绍了LYT-Net,即轻量级YUV Transformer 网络,作为一种新的低光图像增强方法。所提出的架构与传统的基于Retinex的模型不同,它利用YUV颜色空间对亮度(Y)和色度(U和V)的自然分离,简化了在图像中分离光和颜色信息的复杂任务。通过利用 Transformer 捕捉长距离依赖关系的优势,LYT-Net在保持降低模型复杂性的同时,确保了对图像的全面上下文理解。通过采用一种新颖的混合损失函数,LYT-Net在低光图像增强数据集上取得了最先进的结果,同时其体积比其他方法小得多。
源代码和预训练模型:https://github.com/albrateanu/LYT-Net

2. 概述

低光照图像增强(LLIE)是计算机视觉(CV)领域的一个重要且具有挑战性的任务。在低光照条件下捕获图像会显著降低其质量,导致细节和对比度的丧失。这种退化不仅会导致主观上不愉快的视觉体验,还会影响许多CV系统的性能。LLIE的目标是在提高可见度和对比度的同时,恢复暗环境中固有的各种失真。

低光照条件指的是环境场景中的光照水平低于实现最佳可见性的标准要求。然而,在实际应用中,到目前为止,还无法确定特定的理论值来明确界定低光照环境。因此,对于识别和量化构成低光照条件的标准,尚未有统一的规定。

LLIE在各种计算机视觉任务中发挥着重要作用,如特征提取或基于内容的识别。此外,它还是更复杂系统在诸如医学成像、移动遥感、视频监控系统等不同领域中一个关键步骤。

LLIE解决方案随着卷积神经网络(CNN)的发展而进步,所提出的解决方案主要分为两类。第一类是直接使用CNN将低光照图像映射到正常光照的等价图像,这种方法通常忽略了人类对颜色的感知,并且在理论解释性上有所缺乏。第二类,受到Retinex理论的启发,采用更为复杂的多阶段训练流程,使用不同的CNN执行诸如分解彩色图像、去噪反射率和调整光照等任务。尽管这种方法与理论模型更为一致,但其复杂性以及需要多个训练阶段带来了显著的挑战。
在这里插入图片描述

在本文中,作者提出了一种基于T

### RetinexFormer 实现教程 #### 1. 环境准备 为了成功复现RetinexFormer,需先设置合适的开发环境。推荐使用Python 3.x以及PyTorch作为主要工具库。 安装必要的依赖包可以通过`requirements.txt`文件完成: ```bash pip install -r requirements.txt ``` 其中应包含但不限于以下软件包: - PyTorch >= 1.7.0 - torchvision - numpy - opencv-python - matplotlib #### 2. 数据集准备 获取并预处理用于训练的数据集对于模型的成功至关重要。通常情况下,数据集可以从公开资源下载或自行采集。确保数据集中包含了足够的光照图像样本及其对应的正常光照条件下的真实情况图片。 #### 3. 模型架构定义 根据描述,RetinexFormer的核心组件之一是照明引导变换器(IGT),它负责捕捉不同光照条件下区域间的非局部关系[^2]。以下是简化版的IGT模块实现示例: ```python import torch.nn as nn from transformers import TransformerEncoderLayer, TransformerEncoder class IGT(nn.Module): def __init__(self, d_model=512, nhead=8, num_encoder_layers=6): super().__init__() encoder_layer = TransformerEncoderLayer(d_model=d_model, nhead=nhead) self.transformer_encoder = TransformerEncoder(encoder_layer, num_encoder_layers) def forward(self, src): output = self.transformer_encoder(src) return output ``` 整个RetinexFormer则构建在此基础上,结合了其他部分如特征提取层、解码器等。完整的网络结构可能更加复杂,具体细节取决于实际论文中的设计。 #### 4. 训练流程配置 设定好超参数之后就可以开始训练过程了。这里给出一段简单的训练循环伪代码: ```python for epoch in range(num_epochs): model.train() for batch_idx, (data, target) in enumerate(train_loader): optimizer.zero_grad() # 前向传播计算损失函数值 output = model(data) loss = criterion(output, target) # 反向传播更新权重 loss.backward() optimizer.step() if batch_idx % log_interval == 0: print(f'Train Epoch: {epoch} [{batch_idx * len(data)}/{len(train_loader.dataset)} ({100. * batch_idx / len(train_loader):.0f}%)]\tLoss: {loss.item():.6f}') evaluate(model, test_loader) ``` 注意这里的`criterion`应当采用适合的任务特定形式;例如,在本案例中可能是自定义的Retinex分解损失\[ℒ_r = ||I - (\mathcal{R} \odot L)||^2_2 + ||\mathcal{R} - (I/L)||^2_2\][^1]。 #### 5. 测试与评估 最后一步是对已训练好的模型进行测试,并与其他现有技术做比较分析。这不仅有助于验证改进的有效性,也能为进一步优化指明方向。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

知来者逆

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值