基于ViT、CLIP、EfficientNet、DINO-v2和BLIP-2构建AI图像相似性搜索

概述

为了深入探究图像相似性,这里决定采用多种先进的人工智能模型进行分析。这些模型包括视觉变换器(ViT)、对比语言-图像预训练模型(CLIP)、基于双向编码器表示的图像描述模型(BLIP)、高效网络(EfficientNet)、DINO-v2以及经典的卷积神经网络VGG16。

通过这些模型,能够从不同角度和层面捕捉到图像之间的相似之处。例如,视觉变换器(ViT)通过将图像分割成多个小块,并利用自注意力机制来分析这些图像块之间的关系,从而揭示出图像的内在相似性;对比语言-图像预训练模型(CLIP)则通过将图像与文本描述相结合,利用大规模数据集进行预训练,从而能够理解图像内容的语义相似性;而基于双向编码器表示的图像描述模型(BLIP)则专注于生成准确的图像描述,并通过比较不同图像的描述来评估它们的相似度.

此外,高效网络(EfficientNet)以其卓越的计算效率和强大的特征提取能力,在图像相似性分析中也表现出色;DINO-v2作为一种自监督学习模型,能够通过对比学习的方式,无需人工标注数据,即可学习到图像的深层特征表示,从而实现对图像相似性的有效评估;而经典的卷积神经网络VGG16则凭借其在图像处理领域的广泛应用和成熟的技术,为图像相似性分析提供了可靠的基准和参考.

直觉:图像作为空间中的向量

图像相似性搜索的核心是一个简单的想法:图像可以表示为高维空间中的向量。当两张图像相似时,它们的向量在这个空间中应该占据相似的位置。我们可以通过测量角度(或余弦相似度)来确定这些向量的相似程度。如果角度小,图像就接近(相似)。如果角度大,图像就相距较远(不同)。这就像在公寓大楼里寻找你的邻居,但方式要抽象得多。
图像的向量嵌入

认识模型

===============
这里使用了几个深度学习模型,每个模型都有其优点和特点:

  • CLIP(对比语言 - 图像预训练):由OpenAI构建,它学习将图像与文本匹配。对于我们的相似性搜索来说,这不是一个坏选择。
  • ViT(视觉Transformer):ViT通过将图像视为序列,类似于Transformer处理文本的方式,彻底改变了图像处理。
  • BLIP:一种视觉 - 语言模型,专注于对齐视觉和文本内容。
  • EfficientNet:以其效率而闻名,该模型非常适合图像识别任务。
  • DINO:一种自监督Transformer模型,擅长从图像中学习特征。
  • VGG16:一个经典的卷积神经网络(CNN),已经存在多年,在图像识别任务中仍然表现出色。

步骤1:数据准备

维基百科上抓取了国旗图像,将世界各国的国旗变成了一个数据集。

import pandas as pd
flags_df = pd.read_csv('national_flags.csv')  
print(flags_df)

从维基百科抓取后的DataFrame

步骤2:特征提取

有了国旗后,真正有趣的部分开始了:提取特征。每个模型都获取国旗图像并将其转换为特征向量。这就像是将一张图像翻译成一个数字列表,这些数字封装了它的特征。

在这个实验中,我将使用Huggingface变压器库来提取嵌入。

  • EfficientNet:通过平均最后一个隐藏层输出的空间维度来提取国旗特征,专注于细粒度模式。
image_processor = AutoImageProcessor.from_pretrained("google/efficientnet-b7")
model = EfficientNetModel.from_pretrained("google/efficientnet-b7")
# 准备输入图像
inputs = image_processor(img, return_tensors='pt')
with torch.no_grad():
    outputs = model(**inputs, output_hidden_states=True)
embedding = outputs.hidden_states[-1]
embedding = torch.mean(embedding, dim=[2,3])
  • ViT
### CLIP ViT-H-14 Model Pretrained on LAION-2B Dataset Details and Resources The **CLIP-ViT-H-14-laion2B-s32B-b79K** model is a variant of the OpenAI CLIP architecture that has been fine-tuned using the large-scale LAION-2B dataset, which consists of over two billion image-text pairs[^1]. This specific version was trained with a subset of this data (s32B), indicating it utilized approximately 32 billion tokens from the full dataset. #### Training Data Characteristics This particular implementation leverages the extensive diversity present within the LAION-2B dataset to enhance its multimodal understanding capabilities across various domains such as object recognition, scene classification, caption generation, etc. #### Performance Evaluation Metrics To assess the effectiveness of models like CLIP-ViT-H-14-laion2B-s32B-b79K, evaluations are conducted against benchmark datasets including VTAB+, COCO, Flickr among others. These tests provide insights into how well these pre-trained networks generalize beyond their original training scope when applied towards novel scenarios or tasks not explicitly seen during development phases. #### Practical Application Guidance For those interested in utilizing this powerful toolset effectively there exists comprehensive documentation available via online repositories where detailed instructions regarding setup procedures alongside example code snippets can be found at project addresses provided earlier under references section [here](https://gitcode.com/mirrors/laion/CLIP-ViT-H-14-laion2B-s32B-b79K)[^2]. Additionally important considerations about system requirements necessary before deployment should also take precedence; ensuring compatibility between hardware/software environments will contribute significantly toward successful integration efforts involving cutting-edge technologies similar to what we've discussed here today concerning clip vit-h /14 -laion2b configurations specifically outlined elsewhere previously mentioned already too![^3] ```python import torch from transformers import CLIPProcessor, CLIPModel model_name = "laion/CLIP-ViT-H-14-laion2B-s32B-b79K" device = "cuda" if torch.cuda.is_available() else "cpu" processor = CLIPProcessor.from_pretrained(model_name) model = CLIPModel.from_pretrained(model_name).to(device) def encode_image(image_path): img = Image.open(image_path) inputs = processor(images=img, return_tensors="pt").to(device) outputs = model.get_image_features(**inputs) return outputs.detach().cpu().numpy() encoded_img = encode_image("example.jpg") print(encoded_img.shape) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

知来者逆

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值