激光SLAM
文章平均质量分 58
马克西姆0
SLAM
展开
-
BALM——对激光建图使用Local-BA
BALM框架对每个scan通过位姿初值转换到世界坐标系上,多帧scan的点组成了一个“线”或“面”特征。计算一个特征内所有点的协方差矩阵A,通过优化A特征分解后的特征值最小。因为线特征,最大特征值表示线段方向,面特征,最小特征值表示面的法向量方向。本文推导了误差对点的雅克比矩阵和误差对位姿的雅克比矩阵。注意:本文中的地图点和位姿是相互独立的,因此,在实验中BALM可以在因为退化导致位姿走“之”字形时,点云依然保持一致性。 自适应voxel的划分,从1m分辨率通过八叉树划分到0.125m分辨率。目的是保原创 2022-04-26 17:57:20 · 1606 阅读 · 1 评论 -
F-LOAM——快速的激光里程计和建图框架总结
F-LOAM相比与LOAM的区别:1. 两次过程去畸变;2.利用Ceres库做scan-submap优化。一、去畸变 因为好多激光频率超过10Hz,所以帧间的时间间隔很小,所以在间隔内假设是匀速度和匀角速度模型。第一步用常速模型进行去畸变和做预测。 经过位姿解算后,利用新的位姿重新对去畸变的特征?(原始特征)再次去畸变。两步运算的好处是,相比一步定位精度相似,但是运算量小了很多。 注:原本LOAM在里程计部分对一帧点云利用里程计计算的Tk,L+1和匀速模型,计算出每个时间戳原创 2022-04-21 17:42:27 · 1254 阅读 · 0 评论 -
FAST-LIO, ikd-Tree, FAST-LIO2, FASTER-LIO论文总结
三分钟了解Fast-Lio,ikd-Tree, FAST-LIO2, FASTER-LIO论文。原创 2022-04-21 17:23:36 · 5081 阅读 · 1 评论 -
V-LOAM总结
V-LOAM可以参考:V-Loam论文解读视觉里程计输出帧与帧之间的位姿。然后激光通过sweep to sweep(使用匀速模型)和 sweep to map(使用LOAM建图的一套寻找匹配点的策略)对激光点云进行配准。系统维护了一个深度图,在视觉里程计中优化函数包含:已知深度的点,三角化的点,和未知深度的点。...原创 2021-09-27 15:37:31 · 874 阅读 · 0 评论 -
LeGo-LOAM论文简析
简单介绍一下LeGo-LOAM和LOAM的区别1.适用于各种复杂物理环境,算法要求的计算量小。2.对点云进行了分类,分类出地面和线段等。在Lidar Odometry特征关联部分引用了分类的label。比如:3.LM优化部分采用两步优化,先用平面点优化再用边缘点优化。因为平面点能约束那三个量,边缘点能约束这三个量。平面点优化完的量做下一步优化的固定约束。...原创 2019-11-19 21:53:06 · 1538 阅读 · 0 评论 -
LOAM 论文总结
*LOAM 论文总结**LOAM全称是LOAM : Lidar Odometry and Mapping in real-time 在2014年发表在RSS上。本文使用的激光是二维激光,加一个电机。从而实现40线,线之间的分辨率是0.25度。本文主要分成两个部分:激光里程计 和 建图。**激光里程计特征点提取:在激光点云数据中提取特征点(包括:边缘点和平面点)。为了使提取的特...原创 2019-10-20 13:46:58 · 2184 阅读 · 0 评论