二项式定理与二项分布、多项式定理与多项分布

二项式定理与二项分布

二项式定理

二项式定理我们在高中就学过了,即:
( a + b ) n = ( n 0 ) a n b 0 + ( n 1 ) a n − 1 b 1 + . . . . + ( n n − 1 ) a 1 b n − 1 + ( n n ) a 0 b n = ∑ i = 0 n ( n i ) a n − i b i (a+b)^n = {n \choose 0}a^nb^0 + {n \choose 1}a^{n-1}b^1+....+{n \choose n-1}a^1b^{n-1} + {n \choose n}a^0b^{n} \\ = \displaystyle\sum_{i=0}^n {n \choose i}a^{n-i}b^i (a+b)n=(0n)anb0+(1n)an1b1+....+(n1n)a1bn1+(nn)a0bn=i=0n(in)anibi
二项式定理可以这么理解:以第二项 ( n 1 ) a n − 1 b {n \choose 1}a^{n-1}b (1n)an1b为例,我们可以在n个括号中,n-1个括号选择a,另一个括号选择b,那么总共有n个括号,每个括号都可以选择b,所以前面有系数 ( n 1 ) {n \choose 1} (1n)

二项式分布

二项分布适用的情况:一次实验结果只有A和B两种,在n次独立重复实验,设A发生的次数为k,每次试验中事件A发生的概率为p,那么事件A恰好发生K次的概率就可以用二项分布来计算:
P ( X = K ) = ( n k ) p k ( 1 − p ) n − k P(X = K) = {n \choose k}p^k(1-p)^{n-k} P(X=K)=(kn)pk(1p)nk
最直观的例子就是抛N次硬币,计算有k次朝上或朝下的概率。
我们可以发现,二项分布的概率计算公式就是二项式定理的某一项,这也很容易理解,因为我们只是计算有k次正面 朝上的概率, 如 果 k 从 0 遍 历 到 n 如果k从0遍历到n k0n,那么就完全是二项式定理了。

多项式定理与多项式分布

这个过程和二项式定理与二项式分布的关系很相似。

多项式定理

在这里插入图片描述
多项式定理的某一项也可以按照二项式定理那么理解,我们可以在n个括号中选取 r 1 r_1 r1 x 1 x_1 x1,有 ( n r 1 ) {n \choose r_1} (r1n)种取法,再在 ( n − r 1 ) (n-r_1) (nr1)个括号中选取 r 2 r_2 r2 x 2 x_2 x2,有 ( n − r 1 r 2 ) {n-r_1 \choose r_2} (r2nr1)种取法,,,,这样以此类推。根据乘法原理,应该有
在这里插入图片描述
这样前面的系数就出来了。

多项式分布

多项分布适用的情况:一次实验结果有 X 1 , X 2 , . . . X k X_1, X_2, ... X_k X1,X2,...Xk种,n次独立重复实验,设 X i X_i Xi发生的次数分别为 r i r_i ri,每次试验中事件 X i X_i Xi发生的概率为 p i p_i pi,那么事件 X 1 , X 2 , . . . X k X_1, X_2, ... X_k X1,X2,...Xk恰好发生 r 1 , r 2 , . . . r k r_1, r_2, ... r_k r1,r2,...rk次的概率就可以用多项分布来计算:
P ( X 1 = r 1 , X 2 = r 2 , , , X k = r k ) = n ! r 1 ! r 2 ! . . . r k ! p 1 r 1 p 2 r 2 . . . p k r k P(X_1 = r_1, X_2 = r_2,,, X_k = r_k ) = {n! \over r_1!r_2!...r_k!}p_1^{r_1}p_2^{r_2}...p_k^{r_k} P(X1=r1,X2=r2,,,Xk=rk)=r1!r2!...rk!n!p1r1p2r2...pkrk

可以看到,多项式分布概率计算公式也是多项式定理的某一项。
多项式分布最直观的例子就是掷骰子,掷21次骰子,点数1,2,3,4,5,6朝上的次数分别是6,5,4,3,2,1的概率是多少,这样的问题就可以用多项式分布来建模。

参考:https://blog.csdn.net/apache_xiaochao/article/details/30535521

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值