二项式定理与二项分布
二项式定理
二项式定理我们在高中就学过了,即:
(
a
+
b
)
n
=
(
n
0
)
a
n
b
0
+
(
n
1
)
a
n
−
1
b
1
+
.
.
.
.
+
(
n
n
−
1
)
a
1
b
n
−
1
+
(
n
n
)
a
0
b
n
=
∑
i
=
0
n
(
n
i
)
a
n
−
i
b
i
(a+b)^n = {n \choose 0}a^nb^0 + {n \choose 1}a^{n-1}b^1+....+{n \choose n-1}a^1b^{n-1} + {n \choose n}a^0b^{n} \\ = \displaystyle\sum_{i=0}^n {n \choose i}a^{n-i}b^i
(a+b)n=(0n)anb0+(1n)an−1b1+....+(n−1n)a1bn−1+(nn)a0bn=i=0∑n(in)an−ibi
二项式定理可以这么理解:以第二项
(
n
1
)
a
n
−
1
b
{n \choose 1}a^{n-1}b
(1n)an−1b为例,我们可以在n个括号中,n-1个括号选择a,另一个括号选择b,那么总共有n个括号,每个括号都可以选择b,所以前面有系数
(
n
1
)
{n \choose 1}
(1n)
二项式分布
二项分布适用的情况:一次实验结果只有A和B两种,在n次独立重复实验,设A发生的次数为k,每次试验中事件A发生的概率为p,那么事件A恰好发生K次的概率就可以用二项分布来计算:
P
(
X
=
K
)
=
(
n
k
)
p
k
(
1
−
p
)
n
−
k
P(X = K) = {n \choose k}p^k(1-p)^{n-k}
P(X=K)=(kn)pk(1−p)n−k
最直观的例子就是抛N次硬币,计算有k次朝上或朝下的概率。
我们可以发现,二项分布的概率计算公式就是二项式定理的某一项,这也很容易理解,因为我们只是计算有k次正面 朝上的概率,
如
果
k
从
0
遍
历
到
n
如果k从0遍历到n
如果k从0遍历到n,那么就完全是二项式定理了。
多项式定理与多项式分布
这个过程和二项式定理与二项式分布的关系很相似。
多项式定理
多项式定理的某一项也可以按照二项式定理那么理解,我们可以在n个括号中选取
r
1
r_1
r1个
x
1
x_1
x1,有
(
n
r
1
)
{n \choose r_1}
(r1n)种取法,再在
(
n
−
r
1
)
(n-r_1)
(n−r1)个括号中选取
r
2
r_2
r2个
x
2
x_2
x2,有
(
n
−
r
1
r
2
)
{n-r_1 \choose r_2}
(r2n−r1)种取法,,,,这样以此类推。根据乘法原理,应该有
这样前面的系数就出来了。
多项式分布
多项分布适用的情况:一次实验结果有
X
1
,
X
2
,
.
.
.
X
k
X_1, X_2, ... X_k
X1,X2,...Xk种,n次独立重复实验,设
X
i
X_i
Xi发生的次数分别为
r
i
r_i
ri,每次试验中事件
X
i
X_i
Xi发生的概率为
p
i
p_i
pi,那么事件
X
1
,
X
2
,
.
.
.
X
k
X_1, X_2, ... X_k
X1,X2,...Xk恰好发生
r
1
,
r
2
,
.
.
.
r
k
r_1, r_2, ... r_k
r1,r2,...rk次的概率就可以用多项分布来计算:
P
(
X
1
=
r
1
,
X
2
=
r
2
,
,
,
X
k
=
r
k
)
=
n
!
r
1
!
r
2
!
.
.
.
r
k
!
p
1
r
1
p
2
r
2
.
.
.
p
k
r
k
P(X_1 = r_1, X_2 = r_2,,, X_k = r_k ) = {n! \over r_1!r_2!...r_k!}p_1^{r_1}p_2^{r_2}...p_k^{r_k}
P(X1=r1,X2=r2,,,Xk=rk)=r1!r2!...rk!n!p1r1p2r2...pkrk
可以看到,多项式分布概率计算公式也是多项式定理的某一项。
多项式分布最直观的例子就是掷骰子,掷21次骰子,点数1,2,3,4,5,6朝上的次数分别是6,5,4,3,2,1的概率是多少,这样的问题就可以用多项式分布来建模。
参考:https://blog.csdn.net/apache_xiaochao/article/details/30535521