第五节笔记:LMDeploy 大模型量化部署实践

本文探讨了大模型部署中使用FP16半精度来减少内存占用,通过LMDeploy进行量化技术,以提升推理速度。特别关注了decoder-only架构的特性,以及如何在存储和推理阶段分别处理量化问题。同时,介绍了如何进行实际的安装、部署和量化实践。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

大模型部署背景
在这里插入图片描述
参数用FP16半精度也就是2字节,7B的模型就大约占14G
在这里插入图片描述

2.LMDeploy简介
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
量化降低显存需求量,提高推理速度

大语言模型推理是典型的访问密集型,因为是decoder only的架构,需要token by token的生成,因此需要频繁读取之前生成过的token。
这个量化只是在存储时做的, 在推理时还要反量化回FP16.
在这里插入图片描述
在这里插入图片描述
w4a16意思是参数4bit量化,激活时是16bit

在这里插入图片描述
不用等一个batch的请求全部执行完才退出。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
3.动手实践-安装、部署、量化

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值