TensorFlow学习(三)
代价函数
二次代价函数

其中C为代价函数,x为样本,y为实际值,a为输出值,n表示样本总数。
如果使用梯度下降法:

交叉熵代价函数

其中C为代价函数,x为样本,y为实际值,a为输出值,n表示样本总数。
如果使用梯度下降法:


对数释然代价函数
对数释然函数在二分类时可以简化成交叉熵代价函数
对数释然代价函数常用来作为softmax回归的代价函数
交叉熵代价函数常用来作为sigmoid函数的代价函数

过拟合

为了防止过拟合,有三种方法:
1.增加数据集;
2.正则化;

3.Dropout;
Dropout
采用Dropout方法

在一次迭代中让部分神经元工作,部分神经元不工作,下一次迭代换另一部分神经元工作。
代码:
############一个隐藏层,隐藏层为700
############激活函数为tf.nn.tanh
############使用dropout,训练为%70,测试为%100
############代价函数使用二次代价函数,优化器使用梯度下降法
import tensorflow as tf
import numpy as np
from tensorflow.examples.tutorials.mnist import input_data
#载入数据集
mnist = input_data.read_data_sets("MNIST_data",one_hot=True)
#每个批次的大小
batch_size = 100
#计算一共有多少个批次
n_batch = mnist.train.num_examples // batch_size
#定义两个placeholder
x = tf.placeholder(tf.float32,[None,784])
y = tf.placeholder(tf.float32,[None,10])
keep = tf.placeholder(tf.float32)
#创建一个简单的神经网络
W1 = tf.Variable(tf.truncated_normal([784,700],stddev=0.1))
b1 = tf.Variable(tf.zeros([1,700]) + 0.1)
L1 = tf.matmul(x,W1)+b1
LL1 = tf.nn.tanh(L1)
L1_d = tf.nn.dropout(LL1,keep)
W2 = tf.Variable(tf.truncated_normal([700,10],stddev=0.1))
b2 = tf.Variable(tf.zeros([10]) + 0.1)
L2 = tf.matmul(L1_d,W2)+b2
#LL2 = tf.nn.sigmoid(L2)
prediction = tf.nn.softmax(L2)
#二次代价函数
loss = tf.reduce_mean(tf.square(y-prediction))
#交叉熵代价函数
#loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y,logits=prediction))
#使用梯度下降法
train_step = tf.train.GradientDescentOptimizer(0.3).minimize(loss)
#初始化变量
init = tf.global_variables_initializer()
#结果存放在一个布尔型列表中
correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(prediction,1))#argmax返回一维张量中最大的值所在的位置
#求准确率
accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
with tf.Session() as sess:
sess.run(init)
for epoch in range(20):
for batch in range(n_batch):
batch_xs,batch_ys = mnist.train.next_batch(batch_size)
sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys,keep:0.7}) #用百分之70的神经元训练
acc = sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels,keep:1.0}) #用全部的神经元测试
acc1 = sess.run(accuracy,feed_dict={x:mnist.train.images,y:mnist.train.labels,keep:1.0})
print("Iter " + str(epoch) + ",Testing Accuracy " + str(acc)+",Training Accuracy " + str(acc1))
结果为:

优化器



1161

被折叠的 条评论
为什么被折叠?



