1、Affine层也叫线性层,在神经网络全连接用的比较多,即Y = WX+b, 其中W为权重向量,b为偏置 在pytorch中Affine层为采用nn.Linear()类实现 2、通过帮助文档,可知nn.Linear()只需要接收输入层的维度和输出层的维度即可,权重和偏置的初始化工作pytroch已完成 3、由于在卷积网络中前面的网络一般输入参数是4维(BATCH,C,H,W),而nn.Linear()接收1维度数据,因此可用torch.flatten()将高纬度数据进行展平
以下是Affine层的简单示例
# Affine层也叫线性层,在神经网络全连接用的比较多,即Y = WX+b, 其中W为权重向量,b为偏置
# 在pytorch中Affine层为采用nn.Linear()类实现
# 通过帮助文档,可知nn.Linear()只需要接收输入层的维度和输出层的维度即可,权重和偏置的初始化工作pytroch已完成
# 由于在卷积网络中前面的网络一般输入参数是4维,而nn.Linear()接收1维度数据,因此可用torch.flatten()将高纬度数据进行展平
import torch
import torchvision
from torch import nn
from torch.utils.data import DataLoader
class My_nn(nn.Module):
def __init__(self):
super(My_nn, self).__init__()
self.linear1 = nn.Linear(in_features=3072, out_features=10, bias=True) # 表示输入层为3072个数,输出层为10个数,设置偏置
def forward(self, input):
output = self.linear1(input)
return output
if __name__ == '__main__':
# 导入数据集
Data_input = torchvision.dataset

文章介绍了在PyTorch中如何使用nn.Linear()实现Affine层,以及在卷积网络中如何通过torch.flatten()将4维数据展平为1维以适应线性层的需求。示例展示了CIFAR10数据集的处理过程,比较了torch.reshape()和torch.flatten()两种展平方法,强调后者能同时进行降维简化数据结构。
最低0.47元/天 解锁文章
3585

被折叠的 条评论
为什么被折叠?



