Affine层之nn.Linear()的使用

文章介绍了在PyTorch中如何使用nn.Linear()实现Affine层,以及在卷积网络中如何通过torch.flatten()将4维数据展平为1维以适应线性层的需求。示例展示了CIFAR10数据集的处理过程,比较了torch.reshape()和torch.flatten()两种展平方法,强调后者能同时进行降维简化数据结构。
1、Affine层也叫线性层,在神经网络全连接用的比较多,即Y = WX+b, 其中W为权重向量,b为偏置
在pytorch中Affine层为采用nn.Linear()类实现
2、通过帮助文档,可知nn.Linear()只需要接收输入层的维度和输出层的维度即可,权重和偏置的初始化工作pytroch已完成
3、由于在卷积网络中前面的网络一般输入参数是4维(BATCH,C,H,W),而nn.Linear()接收1维度数据,因此可用torch.flatten()将高纬度数据进行展平

以下是Affine层的简单示例

# Affine层也叫线性层,在神经网络全连接用的比较多,即Y = WX+b, 其中W为权重向量,b为偏置
# 在pytorch中Affine层为采用nn.Linear()类实现
# 通过帮助文档,可知nn.Linear()只需要接收输入层的维度和输出层的维度即可,权重和偏置的初始化工作pytroch已完成

# 由于在卷积网络中前面的网络一般输入参数是4维,而nn.Linear()接收1维度数据,因此可用torch.flatten()将高纬度数据进行展平
import torch
import torchvision
from torch import nn
from torch.utils.data import DataLoader


class My_nn(nn.Module):
    def __init__(self):
        super(My_nn, self).__init__()
        self.linear1 = nn.Linear(in_features=3072, out_features=10, bias=True)  # 表示输入层为3072个数,输出层为10个数,设置偏置

    def forward(self, input):
        output = self.linear1(input)
        return output


if __name__ == '__main__':
    # 导入数据集
    Data_input = torchvision.dataset
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值