压缩传感综述

压缩传感是一种新兴的信号采集理论,它通过非自适应线性投影保持信号结构,并使用优化算法从少量测量数据重构原始信号,突破了香农采样定理的限制。这一理论在图像处理、生物传感等领域有广泛应用,且测量矩阵的选择和信号重构算法是其关键。常见的测量矩阵包括高斯随机矩阵、二值随机矩阵等,重构算法主要有最小l1范数法、匹配追踪系列算法。
摘要由CSDN通过智能技术生成

 压缩传感综述
李树涛1
魏 丹1
摘 要 在传统采样过程中, 为了避免信号失真, 采样频率不得低于信号最高频率的 2 倍. 然而对于数字图像、视频的获取,
依照香农(Shannon) 定理会导致海量采样数据, 大大增加了存储和传输的代价. 近年来, 一种新兴的压缩传感理论为数据采集
技术带来了革命性的突破, 得到了研究人员的广泛关注. 压缩传感采用非自适应线性投影来保持信号的原始结构, 能通过数值
最优化问题准确重构原始信号. 压缩传感以远低于奈奎斯特频率进行采样, 在压缩成像系统、模拟/信息转换、生物传感等领
域有着广阔的应用前景. 本文主要介绍了压缩传感的基本理论及相关应用, 并对其研究前景进行了展望.
关键词 压缩传感, 稀疏表示, 信号重构, 约束等距性, 压缩成像
中图分类号 TN911.7
A Survey on Compressive Sensing
LI Shu-Tao1
WEI Dan1
Abstract In the traditional signal sampling process, Shannon theorem must be satis¯ed for preventing signal distortion.
But in some practical applications (such as image and video processing systems), an increased sampling frequency will
substantially increase the data storage and transmission costs. Di®erent from the traditional signal acquisition process,
compressive sensing, which is a new theory that captures and represents compressible signals at a sampling rate signi¯cantly
below the Nyquist rate. It ¯rst employs nonadaptive linear projections that preserve the structure of the signal, and then
the signal reconstruction is conducted using an optimization process from these projections. Compressive sensing has
broad applications such as compressive imaging, analog-to-information conversion, biosensing, etc. This paper surveys the
principles of compressive sensing and its related applications. Some further work on this theory is also presented.
Key words Compressive sensing, sparse representation, signal reconstruction, restricted isometry property, compressive
imaging

传统的信号获取和处理过程主要包括采样、压
缩、传输和解压缩四个部分, 如图 1 所示. 其采样过
程必须满足香农采样定理, 即采样频率不能低于模
拟信号频谱中最高频率的2 倍. 在信号压缩中, 先对
信号进行某种变换, 如离散余弦变换或小波变换, 然
后对少数绝对值较大的系数进行压缩编码, 舍弃零
或接近于零的系数. 通过对数据进行压缩, 舍弃了采
样获得的大部分数据, 但不影响 \感知效果"[1]
. 例
如, 在运用数百万像素的数码相机对场景进行成像
时, 将会得到海量的像素信息, 但通过压缩编码后,
只对部分信息进行存储和传输, 最后通过相应的解
压缩算法对原始图像进行重构.
如果信号本身是可压缩的,那么是否可以直接获
收稿日期 2008-09-01 收修改稿日期 2009-03-13
Received September 1, 2008; in revised form March 13, 2009
国家自然科学基金 (60871096, 60835004), 高等学校博士学科点专项
科研基金 (200805320006), 教育部科学技术研究重点项目 (2009-120)
资助
Supported by National Natural Science Foundation of China
(60871096, 60835004), Specialized Research Fund for the Doc-
toral Program of Higher Education of China (200805320006),
and the Key Project of Science and Technology of Chinese Min-
istry of Education (2009-120)
1. 湖南大学电气与信息工程学院 长沙 410082
1. College of Electrical and Information Engineering, Hunan
University, Changsha 410082
DOI: 10.3724/SP.J.1004.2009.01369
图 1 传统的信息获取与处理流程
Fig. 1 The traditional information acquisition and
processing
取其压缩表示 (即压缩数据), 从而略去对大量无用
信息的采样呢? Candµes 在 2006 年从数学上证明了
可以从部分傅里叶变换系数精确重构原始信号, 为
压缩传感奠定了理论基础[2]
. Candµes 和 Donoho 在
相关研究基础上于 2006 年正式提出了压缩传感的
概念[1; 3]
. 其核心思想是将压缩与采样合并进行, 首
先采集信号的非自适应线性投影 (测量值), 然后根
据相应重构算法由测量值重构原始信号[1]
. 压缩传
感的优点在于信号的投影测量数据量远远小于传统
采样方法所获的数据量, 突破了香农采样定理的瓶
颈, 使得高分辨率信号的采集成为可能. 压缩传感理
论框架如图 2 所示.
压缩传感理论主要包括信号的稀疏表示、编码
测量和重构算法等三个方面[4]
. 信号的稀疏表示就
是将信号投影到正交变换基时, 绝大部分变换系数
的绝对值很小, 所得到的变换向量是稀疏或者近似
稀疏的, 可以将其看作原始信号的一种简洁表达[5]
,

图 2 压缩传感理论框架
Fig. 2 Theory frame of compressive sensing
这是压缩传感的先验条件, 即信号必须在某种变
换下可以稀疏表示. 通常变换基可以根据信号本
身的特点灵活选取, 常用的有离散余弦变换基、
快速傅里叶变换基、离散小波变换基[6]
、Curvelet
基[7]
、Gabor 基[8]
以及冗余字典[8¡10]
等. 在编码测
量中, 首先选择稳定的投影矩阵, 为了确保信号的线
性投影能够保持信号的原始结构, 投影矩阵必须满
足约束等距性(Restricted isometry property, RIP)
条件[11]
, 然后通过原始信号与测量矩阵的乘积获得
原始信号的线性投影测量. 最后, 运用重构算法由测
量值及投影矩阵重构原始信号. 信号重构过程一般
转换为一个最小 l0 范数的优化问题, 求解方法主要
有最小 l1 范数法[2; 12]
、匹配追踪系列算法[13]
、最小
全变分方法[2]
、迭代阈值算法[14]
等.
其中, ª = [à à Ã1jà à Ã2j ¢ ¢ ¢ jà à ÃN], à à Ãi 为列向量, N £1 的
列向量x x x是f f f 的加权系数序列, xi = hf f f;Ã Ã Ãii = Ã Ã ÃT
i f f f
可见x x x 是信号f f f 的等价表示, 如图 4 所示. 如果
只有很少的大系数, 则称信号f f f 是可压缩的; 如果
只有 K 个元素为非零, 则称x x x 为信号f f f 的 K 稀疏
(a) 原始图像
(a) Original image
(b) 图像小波变换系数
(b) Transform coe±cients

鉴于信号的稀疏表示在压缩传感理论中的重要
性, 本文第1 节对其进行了介绍; 第2 节介绍了压缩
传感基本原理; 第 3 节研究了压缩传感测量矩阵; 第
4 节讨论了信号重构算法; 第 5 节介绍压缩传感的
应用; 最后对压缩传感领域的研究前景进行展望.
1 信号稀疏表示
如果一个信号中只有少数元素是非零的, 则该
信号是稀疏的. 通常时域内的自然信号都是非稀疏
的, 但在某些变换域可能是稀疏的. 例如, 对于一幅
自然图像, 几乎所有的像素值都是非零的, 但是将其
变换到小波域时, 大多数小波系数的绝对值都接近
于零, 并且有限的大系数能够表示出原始图像的绝
大部分信息. 图 3 (a) 是大小为 512 £ 512 的灰度图
像, 其小波系数如图3 (b) 所示(为增强其可视性, 系
数的排列是随机的). 图 3 (c) 是由绝对值最大的前
10% 个系数重构出的图像, 可以看出重构图像与原
始图像差别很小, 但是需要保存的信息大大减少了.
根据调和分析理论, 一个长度为 N 的一维离散
时间信号 f f f, 可以表示为一组标准正交基的线性组

f f f =
N X xià à Ãi 或 f f f = ªx x x (1)
(c) 重构图像
(c) Reconstructed image
图 3 灰度图像小波基稀疏表示
Fig. 3 Sparse representation with wavelet basis
(512 £ 512)
图 4 用基 ª 进行稀疏表示 (3 稀疏)
Fig. 4 Sparse representation based on ª (3-sparse)

表示. 另外, 当信号不能用正交基稀疏表示时, 可以
采用冗余字典稀疏表示[8¡10]
.
2 压缩传感
首先考虑一般的信号重构问题, 即已知某一个
测量矩阵 © 2 RM£N (M ¿ N) 以及某未知信号x x x
在该矩阵下的线性测量值y y y 2 RM
y y y = ©x x x (2)
方程 (2) 也可以看作原信号x x x 在 © 下的线性投影,
现在考虑由 y y y 重构 x x x. 很显然, 由于 y y y 的维数远远
低于x x x 的维数, 方程 (2) 有无穷多个解, 即该问题是
不适定的, 很难重构原始信号. 然而如果原始信号x x x
是K 稀疏的, 并且y y y 与© 满足一定条件, 理论证明,
信号 x x x 可以由测量值 y y y 通过求解最优 l0 范数问题
精确重构[2]
:
^ x x x = argmin kx x xk0 s:t: ©x x x = y y y (3)
式中, k ¢ k0 为向量的 l0 范数, 表示向量x x x 中非零元
素的个数. Candµes 等指出, 如果要精确重构 K 稀
疏信号x x x, 测量次数 M (即y y y 的维数) 必须满足 M
= O(K ln(N)), 并且矩阵© 必须满足约束等距性条
件[15¡16]
. 约束等距性条件将在第 3 节中详细讨论.
然而, 常见的自然信号在时域内几乎都是不稀
疏的, 因而上述信号重构过程不能直接应用于自然
信号的重构. 第1 节中的信号稀疏表示理论指出, 自
量线性测量通过求解最优化问题 (5) 直接得到信号
f f f 的压缩表示y y y, 突破了香农采样定理的瓶颈, 降低
了对传感器件分辨率的要求, 使得超高分辨率信号
获取成为可能.
图 5 压缩传感线性测量过程
Fig. 5 The linear measurement of compressive sensing
通过上述分析可以看到, 在压缩传感中, 测量矩
阵的设计和稀疏信号的重构是两个非常重要的问题.
设计稳定的测量矩阵, 应使得表示图像特征的显著
信息不会因为维数的减少而丢失. 由于最优化问题
(5) 本质上是一个 NP-hard 问题, 通常需要对该问
题进行转换, 如将 l0 范数转化为 l1 范数问题加以解
决. 下面对测量矩阵和重构算法的相关研究进行详
细介绍.
3 测量矩阵
为了重构稀疏信号, Candµes 和Tao 给出并证明
了传感矩阵 ~ © 必须满足约束等距性条件[16]
. 对于任. 1 ,
然信号可以通过某种变换 ª 进行稀疏表示, 即f f f =

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值