Jesen不等式

f(x)是区间上的实值连续严格上凸函数,任意一组x1,x2,…xq, λ 1 , λ 2 , . . . λ q , ∑ λ k = 1 \lambda_1, \lambda_2,...\lambda_q, \sum\lambda_k=1 λ1,λ2,...λq,λk=1,则有Jesen不等式如下: f [ ∑ k = 1 q λ k x x ] ⩾ ∑ k = 1 q λ k f ( x k ) f[\sum_{k=1}^q\lambda_kx_x] \geqslant\sum_{k=1}^q{\lambda_kf(x_k)} f[k=1qλkxx]k=1qλkf(xk)当且仅当 x 1 = x 2 = . . . = x q 或 者 λ 任 意 为 1 , 且 其 他 均 为 0 时 , 等 式 成 立 x_1 = x_2 = ...=x_q或者\lambda任意为1,且其他均为0时,等式成立 x1=x2=...=xqλ10

简单的理解就是:先线性组合再函数运算值更大。证明如下:
根据上凸函数的定义,有以下结论:
f [ α x 1 + ( 1 − α ) x 2 ] ⩾ α f ( x 1 ) + ( 1 − α ) f ( x 2 ) f[\alpha x_1 + (1-\alpha )x_2] \geqslant \alpha f(x_1) + (1-\alpha) f(x_2) f[αx1+(1α)x2]αf(x1)+(1α)f(x2)

即当q = 2时,结论成立。
假设q = n 成立,现考虑q = n + 1的情况。
设 λ k ⩾ 0 , ∑ k = 1 n + 1 = 1 , 令 α = ∑ k = 1 k = n , 则 λ n + 1 = 1 − α 设 \lambda_k\geqslant 0,\sum_{k=1}^{n+1} = 1,令\alpha = \sum_{k=1}^{k=n}, 则\lambda_{n+1} = 1 - \alpha λk0,k=1n+1=1,α=k=1k=n,λn+1=1α

∑ k = 1 n + 1 λ k f ( x k ) = ∑ k = 1 n λ k f ( x k ) + λ n + 1 f ( x n + 1 ) = α ∑ k = 1 n ( λ k / α ) f ( x k ) + λ n + 1 f ( x n + 1 ) ≤ f [ α ∑ k = 1 n ( λ k / α ) x k + λ n + 1 f x x + 1 ] ( 因 为 α 和 λ n + 1 之 和 为 1 , 满 足 凸 函 数 的 定 理 ) ≤ f [ ∑ k = 1 n + 1 λ k x k ] \begin{aligned} \sum_{k=1}^{n+1}\lambda_kf(x_k) &= \sum_{k=1}^{n}\lambda_kf(x_k) + \lambda_{n+1}f(x_{n+1}) \\ &=\alpha\sum_{k=1}^n(\lambda_k/\alpha)f(x_k) + \lambda_{n+1}f(x_{n+1}) \\ &\le f[\alpha\sum_{k=1}^n(\lambda_k/\alpha)x_k + \lambda_{n+1}f{x_{x+1}}] \\ &(因为\alpha和\lambda_{n+1}之和为1,满足凸函数的定理)\\ & \le f[\sum_{k=1}^{n+1}\lambda_{k}x_{k}] \end{aligned} k=1n+1λkf(xk)=k=1nλkf(xk)+λn+1f(xn+1)=αk=1n(λk/α)f(xk)+λn+1f(xn+1)f[αk=1n(λk/α)xk+λn+1fxx+1](αλn+11,)f[k=1n+1λkxk]
由此可证:定义成立。

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值