目录
一、系统架构设计
二、核心算法实现
1. 数据预处理算法
# 数据清洗与特征工程伪代码
def preprocess_data(raw_data):
# 缺失值插补(多重填补法)
filled_data = multiple_imputation(raw_data)
# 异常值检测(基于孤立森林)
normal_data = if_outlier_detection(filled_data)
# 特征标准化(Z-score标准化)
standardized_data = z_score_normalization(normal_data)
# 特征选择(基于MIC的筛选)
selected_features = select_features_mic(standardized_data)
return selected_features