一、引言
(一)研究背景与意义
阐述新型隐球菌脑膜炎的危害、治疗挑战,说明本系统在改善诊断、治疗决策及预后方面的重要性。
(二)大模型技术在医疗领域的应用现状及优势
分析大模型于疾病预测、辅助医疗决策等方面的成果与潜力,引出其在本病治疗全流程的应用前景。
二、系统概述
(一)系统目标
明确系统旨在精准预测疾病发展、优化术前术中术后各环节方案、降低并发症风险、提升治疗效果与患者预后质量。
(二)系统架构总览
简述整体架构包含数据层、模型层、应用层及交互层,各层协同实现全流程功能。
三、数据层
(一)数据来源
- 患者临床信息
- 病史(症状、既往病史、接触史等)
- 术前检查结果(影像、实验室检验指标等)
- 术中数据
- 手术操作记录、生命体征监测
- 术后随访数据
- 康复进程、复查结果、并发症发生情况
(二)数据预处理
- 数据清洗(去除噪声、异常值处理)
- 数据标准化(统一量纲、格式)
- 数据标注(针对关键医学特征、结局变量)
四、模型层
(一)大模型选择与构建
- 选型依据(如基于Transformer架构优势)
- 模型训练
- 训练数据集划分、训练参数设置
- 采用迁移学习引入通用医疗知识,微调适配本病特点
(二)模型功能模块
- 术前预测模块
- 疾病严重程度评估
- 手术指征与风险预测
- 并发症发生可能性预估
- 术中辅助模块
- 实时病情变化监测与预警
- 手术策略动态调整建议