若依vue(前后端分离版本)前端使用字典

本文介绍了如何在使用IDEA作为开发工具的Vue2项目中,通过ElementUI实现字典管理,包括在下拉框中的应用以及数据列表展示,详细步骤涉及样式和JavaScript代码的编写。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

开发环境

  • IDEA软件
  • 前端 vue2 + element ui

准备工作

1、启动若依系统前后端

2、使用默认账号,超级管理员账户进入系统

3、进入字典管理

添加自己需要的字典和字典数据(标签和键值),这里我的是,名称和类型由自己取名,类型使用英文加下划线,在后面前端代码中需要使用类型。

切换到开发工具IDEA

在需要使用字典的页面中,一般使用字典分为下拉框和数据列表展示

1、下拉框

1)、样式代码

 <el-select>
        <el-option v-for="dict in dict.type.transport_order_status"
                   :key="dict.value"
                   :label="dict.label"
                   :value="dict.value"
        ></el-option>
      </el-select>

2)、js代码

在export default内容中,一定要添加如下属性

export default {
//数组中为你的字典类型,多个在[]中用逗号分隔如dicts:['a_b','b_c']
  dicts:['transport_order_status'],//一定要用dicts命名属性
data(){},
methods:{}
}

 效果如图

2、数据列表 

1)、样式代码

在dict-tag标签中

options属性dict.type.{你在字典管理页面中添加的字典类型}

value属性绑定对应的键值,从我这个项目中说是从后端拿到的数据,在数据库中存储的是state字段,值为1、2、3这个值对应的字典标签就通过dict-tag标签展示

 <el-table-column label="订单状态" align="center" prop="state" >
        <template slot-scope="scope">
          <dict-tag :options="dict.type.transport_order_status" :value="scope.row.state"></dict-tag>
        </template>
      </el-table-column>

2)、js代码

在export default内容中,一定要添加如下属性

export default {
//数组中为你的字典类型,多个在[]中用逗号分隔如dicts:['a_b','b_c']
  dicts:['transport_order_status'],//一定要用dicts命名属性
data(){},
methods:{}
}

效果如图

### 利用 Dify 和 大型语言模型 创建 Excel 统计数据可视化 为了实现这一目标,可以采用如下方法: 通过集成Dify平台与大型语言模型(LLM),能够简化复杂的数据分析流程并提高效率。对于希望在Excel中创建统计数据可视化的用户来说,这提供了一种的途径[^1]。 #### 准备工作 确保已安装必要的库和工具包,例如`openpyxl`用于操作Excel文件以及`matplotlib`或`seaborn`来绘制图表。这些库可以通过pip命令轻松获取: ```bash pip install openpyxl matplotlib seaborn ``` #### 数据准备阶段 使用Python脚本读取Excel中的原始数据,并将其转换成适合绘图的形式。这里以一个简单的例子说明如何加载Excel表格内的销售记录作为样本数据集。 ```python import pandas as pd # 加载Excel文档 data = pd.read_excel('sales_data.xlsx') print(data.head()) ``` #### 图表生成过程 接下来定义函数,该函数接收来自用户的自然语言指令并通过调用相应的API接口解析意图;之后基于解析后的参数设置自动构建所需的统计图形。此部分涉及到与支持对话式的AI服务交互,比如借助于像ChatGPT这样的预训练模型来进行语义理解。 ```python from dify import create_chart # 假设这是由Dify提供的功能模块 def generate_visualization(prompt, data_frame): chart_params = parse_natural_language_to_parameters(prompt) # 解析自然语言描述为具体参数 fig, ax = plt.subplots() # 使用Matplotlib或其他绘图库根据chart_params定制化作图逻辑... save_path = 'output.png' plt.savefig(save_path) return save_path # 示例:假设用户输入了“按月份显示销售额趋势” result_image = generate_visualization("show sales trend by month", data) ``` 上述代码片段展示了如何结合Dify API和服务端的大型语言模型完成从文本到图像的过程。值得注意的是,在实际应用过程中可能还需要考虑更多细节问题,如异常处理机制的设计、用户体验优化等方面的工作。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值