论文写作 18: 审稿意见回复要直截了当

这篇博客分享了在期刊投稿过程中,面对编辑和审稿人反馈的修改意见时,如何正确和有效地进行论文修改及回复。内容包括:1) 保持积极态度,理解审稿人的帮助性质;2) 直接回应问题,避免偏离主题;3) 修改重点在于正文,用蓝色标记改动;4) 注意审稿人的细节,如拼写错误;5) 精炼地回复审稿人的总结;6) 在论文中详细解释重要问题;7) 如有遗漏,自行添加;8) 尽量简洁回复;9) 对英文写作进行润色;10) 增加对实验结果的讨论。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

稿件投到期刊, 如果编辑让你修改, 多半就有戏了. 在修改论文的同时, 需要准备一个 point-to-point 的回复. 几点注意事项:

  1. 思想上务必要端正态度, 编辑和审稿人花大量时间义务审稿不是想为难你, 而是来帮助你改进论文质量.
  2. 问题应该直接回答, 而不要顾左右而言他.
  3. 回复不要太长, 正文中进行相应的修改才是重点. 审稿人更关注你正文修改得如何, 毕竟它才是呈现给读者的内容.
  4. 正文中修改部分应用蓝色字标出.
  5. 审稿人的拼写错误要帮他纠正.

例子:
The paper clearly states what it will do. Giving a reasonable estimation to the number of labels in cost-sensitive active learning is indeed important. The idea is new.
Response: We thank the reviewer for the kind words.

审稿人会对你的论文进行一个总结, 你直接这样回复表示感谢即可.

  1. Why is determining the number of labels in cost-sensitive active learning
    an important issue?
    Response: In cost-sensitive active learning, a higher number of queried labels leads to higher teacher costs, but may also reduce the misclassification cost. Hence, the number of labels determines the trade-off between the teacher and misclassification costs. We have added some text to explain this in the second paragraph of the introduction.
    问题通常有编号, 如果审稿人没给编号, 你自己也给一个. 这里直接回答问题, 同时指出在论文中哪里进行了修改.

  2. Why is the optimization objective of cost-sensitive active learning to minimize the sum of the teacher cost and the misclassification cost?
    Response: Cost-sensitive learning usually aims to minimize the total cost. Because we consider teacher and misclassification costs in this paper, the optimization objective is to minimize their sum. We have added some explanations to clarify this in Section 3.1.
    和上一条相似.

  3. Page 7, “Min et al. [23] considered the classification expectation and divided the entire data into three regions.” Do you use a similar method of three regions in this paper?
    Response: In paper [23] (now [28]), Region I contains instances for which the expected misclassification cost is lower than the teacher cost, Region II contains instances to be labeled by the oracle, and Region III contains the remaining instances. In this paper, we use a similar method that consists of three regions. Region I contains instances labeled by the oracle, Region II contains instances classified by the active learner, and Region III contains the remaining instances.
    参考文献编号可能改变.

  4. In Figure 1, “Round 1” may be better than “Step 1.”
    Response: We accept the reviewer’s suggestion.
    这个回复就很短, 甚至可以写成 “Suggestion accepted.”

  5. The English writing should be polished, especially in the experimental part.
    Response: We thank the reviewer for this important suggestion. We have consulted Edanz Editing to address the language issues.
    有钱任性, 就可以找专业编辑修改语言. 一篇论文需要 3000-5000 RMB, 而且现在的科研经费不能报销 (曾经可以).

  6. Experiments: I missed a discussion of the results. A discussion of the results is needed.
    Response: Thank you for bringing this important issue to our attention. We have added Section 6.5 to discuss the advantages and limitations of ALSE.
    为了一个审稿意见, 我们会增加一个小节甚至新的对比算法. 本文算法的优势和劣势都要讨论, 这才是科研的态度.

  7. 如果你自己找到以前版本的某些问题, 悄悄改了就行, 不要给审稿人说. 除非这个修改太大, 肯定会被看到.

数据集介绍:神经元细胞核检测数据集 一、基础信息 数据集名称:神经元细胞核检测数据集 图片数量: - 训练集:16,353张 - 测试集:963张 分类类别: - Neuron(神经元细胞核):中枢神经系统的基本功能单位,检测其形态特征对神经科学研究具有重要意义。 标注格式: - YOLO格式,包含边界框坐标及类别标签,适用于目标检测任务 - 数据来源于显微镜成像,覆盖多种细胞分布形态和成像条件 二、适用场景 神经科学研究: 支持构建神经元定位分析工具,助力脑科学研究和神经系统疾病机理探索 医学影像分析: 适用于开发自动化细胞核检测系统,辅助病理诊断和细胞计数任务 AI辅助诊断工具开发: 可用于训练检测神经元退行性病变的模型,支持阿尔茨海默症等神经疾病的早期筛查 生物教育及研究: 提供标准化的神经元检测数据,适用于高校生物学实验室和科研机构的教学实验 三、数据集优势 大规模训练样本: 包含超1.6万张训练图像,充分覆盖细胞核的多样分布状态,支持模型深度学习 精准定位标注: 所有标注框均严格贴合细胞核边缘,确保目标检测模型的训练精度 任务适配性强: 原生YOLO格式可直接应用于主流检测框架(YOLOv5/v7/v8等),支持快速模型迭代 生物学特性突出: 专注神经元细胞核的形态特征,包含密集分布、重叠细胞等真实生物场景样本 跨领域应用潜力: 检测结果可延伸应用于细胞计数、病理分析、药物研发等多个生物医学领域
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值