部署这两个模型的文章可以看我之前的写的:
鲲鹏+昇腾部署通义千问 QwQ-32B(详细版)【信创国产化】
鲲鹏+昇腾Atlas800IA2(910B4)部署Qwen3-32B【简单自用版】
图片是Qwen3-235B-A22B生成的- -
根据网上查询的资料以及群上大佬在GPUStack的试验场测试后,Qwen3-30B-A3B(MoE模型)与QwQ-32B的对比如下:
1. 参数规模与激活效率
- Qwen3-30B-A3B:总参数约300亿(30B),激活参数仅30亿(占10%)。
- QwQ-32B:未明确总参数规模,但资料显示其激活参数是Qwen3-30B-A3B的10倍(即约300亿激活参数)。
- 优势:Qwen3-30B-A3B通过低激活参数实现更快的推理速度和更低的计算成本。
2. 性能表现
- Qwen3-30B-A3B:在复杂任务(如逐步推理)中表现优异,且能效比显著优于Qwen2.5-32B。支持“思考模式”和“快速模式”切换,适应不同场景需求。
- QwQ-32B:专注于数学、代码等领域的强推理能力(如AIME 24/25、LiveCodeBench指标接近DeepSeek-R1满血版),但存在“过度思考”导致效率下降的问题。
3. 适用场景
- Qwen3-30B-A3B:适合对推理速度和成本敏感的场景,尤其是中小型模型需求(如Qwen3-4B也能匹敌Qwen2.5-72B-Instruct)。
- QwQ-32B:更适合需要极致推理能力的复杂任务(如高精度数学证明、代码生成),但需权衡计算资源消耗。
4. 适配与优化
- Qwen3-30B-A3B:已全面适配昇腾算力,支持国产芯片(鲲鹏昇腾)。
- QwQ-32B:已全面适配昇腾算力,支持国产芯片(鲲鹏昇腾)。
总结
- Qwen3-30B-A3B以高效能、低消耗为特点,适合生产级服务部署(如通过GPUStack快速搭建)。
- QwQ-32B在特定领域(数学、代码)的深度推理能力更强,但需更高算力支持。
建议根据具体任务需求选择:若追求综合效率与成本控制,优先选Qwen3-30B-A3B;若侧重复杂推理能力,则可考虑QwQ-32B。
算是水一篇文章哈