双复摆模型动力学建模(二)

4) 刚体质心速度与加速度

前述坐标系的建立是以各铰为原点, O 0 O_0 O0为惯性坐标系原点, O 1 O_1 O1为铰1坐标系原点,在有根树系统中, O 0 O_0 O0通常与 O 1 O_1 O1重合。
对于刚体的位置矢量有

r 1 = d 11 + d 21 + r 0 = [ C θ 1 ρ 1 S θ 1 ρ 1 0 ] T (33) \boldsymbol{r}_{1} = \boldsymbol{d}_{11} + \boldsymbol{d}_{21} + \boldsymbol{r}_{0} = \begin{bmatrix} C\theta_{1}\rho_{1} & S\theta_{1}\rho_{1} & 0 \end{bmatrix}^{\mathrm{T}} \tag{33} r1=d11+d21+r0=[Cθ1ρ1Sθ1ρ10]T(33)

r 2 = d 12 + d 22 + r 0 = [ C θ 1 l + C ( θ 1 + θ 2 ) ρ 2 S θ 1 l + S ( θ 1 + θ 2 ) ρ 2 0 ] T (34) \boldsymbol{r}_{2} = \boldsymbol{d}_{12} + \boldsymbol{d}_{22} + \boldsymbol{r}_{0} = \begin{bmatrix} C\theta_{1}l + C(\theta_{1}+\theta_{2}) \rho_{2} & S\theta_{1}l + S(\theta_{1}+\theta_{2}) \rho_{2} & 0 \end{bmatrix}^{\mathrm{T}} \tag{34} r2=d12+d22+r0=[Cθ1l+C(θ1+θ2)ρ2Sθ1l+S(θ1+θ2)ρ20]T(34)

其中 r 0 \boldsymbol{r}_{0} r0 O 1 O_1 O1 O 0 O_0 O0的距离

写成矩阵的形式有

r ‾ = d ‾ T 1 ‾ n + r 0 1 ‾ n (35) \underline{\boldsymbol{r}} = \underline{\boldsymbol{d}}^\mathrm{T}\underline{1}_{n} + \boldsymbol{r}_{0}\underline{1}_{n} \tag{35} r=dT1n+r01n(35)

由于 d ˙ i = ω × d i \boldsymbol{\dot{d}}_{i} = \boldsymbol{\omega} \times \boldsymbol{d_{i}} d˙i=ω×di,刚体的速度矢量有

r ˙ 1 = d ˙ 11 + d ˙ 21 + r ˙ 0 = ω 1 × d 11 + 0 = [ − S θ 1 ρ 1 θ ˙ 1 C θ 1 ρ 1 θ ˙ 1 0 ] (36) \dot{\boldsymbol{r}}_{1} = \dot{\boldsymbol{d}}_{11} + \dot{\boldsymbol{d}}_{21} + \dot{\boldsymbol{r}}_{0} = \boldsymbol{\omega}_{1}\times\boldsymbol{d}_{11} + \boldsymbol{0} = \\ \begin{bmatrix} -S\theta_{1}\rho_{1}\dot{\theta}_{1} \\ C\theta_{1}\rho_{1}\dot{\theta}_{1} \\ 0 \end{bmatrix} \tag{36} r˙1=d˙11+d˙21+r˙0=ω1×d11+0= Sθ1ρ1θ˙1Cθ1ρ1θ˙10 (36)

r ˙ 2 = d ˙ 12 + d ˙ 22 + r ˙ 0 = ω 1 × d 12 + ω 2 × d 22 + 0 = [ − S ( θ 1 + θ 2 ) ρ 2 ( θ 1 ˙ + θ 2 ˙ ) − S θ 1 l θ 1 ˙ C ( θ 1 + θ 2 ) ρ 2 ( θ 1 ˙ + θ 2 ˙ ) + C θ 1 l θ 1 ˙ 0 ] (37) \dot{\boldsymbol{r}}_{2} = \dot{\boldsymbol{d}}_{12} + \dot{\boldsymbol{d}}_{22} + \dot{\boldsymbol{r}}_{0} = \boldsymbol{\omega}_1\times\boldsymbol{d}_{12} + \boldsymbol{\omega}_2\times\boldsymbol{d}_{22} + \boldsymbol{0} = \\ \begin{bmatrix} -S(\theta_{1}+\theta_{2}) \rho_{2}(\dot{\theta_{1}}+\dot{\theta_{2}}) - S\theta_{1}l\dot{\theta_{1}} \\ C(\theta_{1}+\theta_{2}) \rho_{2}(\dot{\theta_{1}}+\dot{\theta_{2}}) + C\theta_{1}l\dot{\theta_{1}}\\ 0 \end{bmatrix} \tag{37} r˙2=d˙12+d˙22+r˙0=ω1×d12+ω2×d22+0= S(θ1+θ2)ρ2(θ1˙+θ2˙)Sθ1lθ1˙C(θ1+θ2)ρ2(θ1˙+θ2˙)+Cθ1lθ1˙0 (37)

其中 r ˙ 0 \dot{\boldsymbol{r}}_{0} r˙0 O 1 O_1 O1相对于 O 0 O_0 O0的速度。
写成矩阵的形式有

r ˙ ‾ = − d ‾ T × ω ‾ + r ˙ 0 1 ‾ n (38) \underline{\dot{\boldsymbol{r}}} = -\underline{\boldsymbol{d}}^{\mathrm{T}} \times \underline{\boldsymbol{\omega}} + \dot{\boldsymbol{r}}_{0} \underline{1}_{n} \tag{38} r˙=dT×ω+r˙01n(38)

由于 − a × b = b × a - a \times b = b \times a a×b=b×a,对式 ( 36 ) (36) (36)和式 ( 37 ) (37) (37)进行求导有刚体的加速度矢量

r ¨ 1 = ω ˙ 1 × d 11 + ω 1 × ( ω 1 × d 11 ) + r ¨ 0 = [ − S θ 1 ρ 1 ( θ 1 ¨ + ∂ p 1 ∂ θ 1 θ 1 ˙ θ 1 ˙ ) − C θ 1 ρ 1 θ ˙ 1 θ ˙ 1 C θ 1 ρ 1 ( θ 1 ¨ + ∂ p 1 ∂ θ 1 θ 1 ˙ θ 1 ˙ ) − S θ 1 ρ 1 θ ˙ 1 θ ˙ 1 0 ] (39) \boldsymbol{\ddot{r}}_1 = \boldsymbol{\dot{\omega}}_{1} \times \boldsymbol{d}_{11} + \boldsymbol{\omega}_{1} \times (\boldsymbol{\omega}_{1} \times \boldsymbol{d}_{11}) + \boldsymbol{\ddot{r}}_{0} = \\ \begin{bmatrix} -S\theta_{1}\rho_{1}(\ddot{\theta_{1}}+\frac{\partial{\boldsymbol{p_{1}}}}{\partial{\theta_{1}}}\dot{\theta_{1}}\dot{\theta_{1}}) - C\theta_{1}\rho_{1}\dot{\theta}_{1} \dot{\theta}_{1} \\ C\theta_{1}\rho_{1}(\ddot{\theta_{1}}+\frac{\partial{\boldsymbol{p_{1}}}}{\partial{\theta_{1}}}\dot{\theta_{1}}\dot{\theta_{1}}) - S\theta_{1}\rho_{1}\dot{\theta}_{1} \dot{\theta}_{1} \\ 0 \end{bmatrix} \tag{39} r¨1=ω˙1×d11+ω1×(ω1×d11)+r¨0= Sθ1ρ1(θ1¨+θ1p1θ1˙θ1˙)Cθ1ρ1θ˙1θ˙1Cθ1ρ1(θ1¨+θ1p1θ1˙θ1˙)Sθ1ρ1θ˙1θ˙10 (39)

r ¨ 2 = ω ˙ 1 × d 12 + ω 1 × ( ω 1 × d 12 ) + ω ˙ 2 × d 22 + ω 2 × ( ω 2 × d 22 ) + r ¨ 0 = [ − S θ 1 l ( θ 1 ¨ + ∂ p 1 ∂ θ 1 θ 1 ˙ θ 1 ˙ ) − C θ 1 l θ ˙ 1 θ ˙ 1 C θ 1 l ( θ 1 ¨ + ∂ p 1 ∂ θ 1 θ 1 ˙ θ 1 ˙ ) − S θ 1 l θ ˙ 1 θ ˙ 1 0 ] + [ − S ( θ 1 + θ 2 ) ρ 2 ( θ 1 ¨ + ∂ p 1 ∂ θ 1 θ 1 ˙ θ 1 ˙ + θ 2 ¨ + ∂ p 2 ∂ θ 2 θ 2 ˙ θ 2 ˙ ) − C ( θ 1 + θ 2 ) ρ 2 ( θ 1 ˙ + θ 2 ˙ ) ( θ ˙ 1 + θ ˙ 2 ) C ( θ 1 + θ 2 ) ρ 2 ( θ 1 ¨ + ∂ p 1 ∂ θ 1 θ 1 ˙ θ 1 ˙ + θ 2 ¨ + ∂ p 2 ∂ θ 2 θ 2 ˙ θ 2 ˙ ) − S ( θ 1 + θ 2 ) ρ 2 ( θ 1 ˙ + θ 2 ˙ ) ( θ ˙ 1 + θ ˙ 2 ) 0 ] (40) \boldsymbol{\ddot{r}}_2 = \boldsymbol{\dot{\omega}}_{1} \times \boldsymbol{d}_{12} + \boldsymbol{\omega}_{1} \times (\boldsymbol{\omega}_{1} \times \boldsymbol{d}_{12}) + \boldsymbol{\dot{\omega}}_{2} \times \boldsymbol{d}_{22} + \boldsymbol{\omega}_{2} \times (\boldsymbol{\omega}_{2} \times \boldsymbol{d}_{22}) + \boldsymbol{\ddot{r}}_{0} = \\ \begin{bmatrix} -S\theta_{1}l(\ddot{\theta_{1}}+\frac{\partial{\boldsymbol{p_{1}}}}{\partial{\theta_{1}}}\dot{\theta_{1}}\dot{\theta_{1}}) - C\theta_{1}l\dot{\theta}_{1} \dot{\theta}_{1} \\ C\theta_{1}l(\ddot{\theta_{1}}+\frac{\partial{\boldsymbol{p_{1}}}}{\partial{\theta_{1}}}\dot{\theta_{1}}\dot{\theta_{1}}) - S\theta_{1}l\dot{\theta}_{1} \dot{\theta}_{1} \\ 0 \end{bmatrix} + \\ \begin{bmatrix} -S(\theta_{1}+\theta_{2}) \rho_{2} (\ddot{\theta_{1}}+\frac{\partial{\boldsymbol{p_{1}}}}{\partial{\theta_{1}}}\dot{\theta_{1}}\dot{\theta_{1}} + \ddot{\theta_{2}}+\frac{\partial{\boldsymbol{p_{2}}}}{\partial{\theta_{2}}}\dot{\theta_{2}}\dot{\theta_{2}}) -C(\theta_{1}+\theta_{2}) \rho_{2}(\dot{\theta_{1}}+\dot{\theta_{2}})(\dot{\theta}_{1}+\dot{\theta}_{2}) \\ C(\theta_{1}+\theta_{2}) \rho_{2} (\ddot{\theta_{1}}+\frac{\partial{\boldsymbol{p_{1}}}}{\partial{\theta_{1}}}\dot{\theta_{1}}\dot{\theta_{1}} + \ddot{\theta_{2}}+\frac{\partial{\boldsymbol{p_{2}}}}{\partial{\theta_{2}}}\dot{\theta_{2}}\dot{\theta_{2}}) - S(\theta_{1}+\theta_{2}) \rho_{2}(\dot{\theta_{1}}+\dot{\theta_{2}})(\dot{\theta}_{1}+\dot{\theta}_{2})\\ 0 \end{bmatrix} \tag{40} r¨2=ω˙1×d12+ω1×(ω1×d12)+ω˙2×d22+ω2×(ω2×d22)+r¨0= Sθ1l(θ1¨+θ1p1θ1˙θ1˙)Cθ1lθ˙1θ˙1Cθ1l(θ1¨+θ1p1θ1˙θ1˙)Sθ1lθ˙1θ˙10 + S(θ1+θ2)ρ2(θ1¨+θ1p1θ1˙θ1˙+θ2¨+θ2p2θ2˙θ2˙)C(θ1+θ2)ρ2(θ1˙+θ2˙)(θ˙1+θ˙2)C(θ1+θ2)ρ2(θ1¨+θ1p1θ1˙θ1˙+θ2¨+θ2p2θ2˙θ2˙)S(θ1+θ2)ρ2(θ1˙+θ2˙)(θ˙1+θ˙2)0 (40)

写成矩阵的形式有

r ¨ ‾ = − d ‾ T × ω ¨ ‾ + a ‾ (41) \underline{\ddot{\boldsymbol{r}}} = -\underline{\boldsymbol{d}}^{\mathrm{T}} \times \underline{\boldsymbol{\ddot{\omega}}} + \underline{\boldsymbol{a}} \tag{41} r¨=dT×ω¨+a(41)

其中 a ‾ \underline{\boldsymbol{a}} a B 0 B_{0} B0牵连加速度以及路径上刚体转动向心加速度之和

a ‾ = [ a 1 a 2 ] T \underline{\boldsymbol{a}} = \begin{bmatrix} \boldsymbol{a}_1 & \boldsymbol{a}_2 \end{bmatrix}^{\mathrm{T}} a=[a1a2]T

a 1 = r ¨ 0 + ∑ i = 1 2 ω 1 × ( ω 1 × d i 1 ) = [ − C θ 1 ρ 1 θ ˙ 1 θ ˙ 1 − S θ 1 ρ 1 θ ˙ 1 θ ˙ 1 0 ] \boldsymbol{a}_{1} = \boldsymbol{\ddot{r}}_0 + \sum_{i=1}^{2}\boldsymbol{\omega}_{1} \times (\boldsymbol{\omega}_{1} \times \boldsymbol{d}i1) = \begin{bmatrix} -C\theta_{1}\rho_{1}\dot{\theta}_{1} \dot{\theta}_{1} \\ -S\theta_{1}\rho_{1}\dot{\theta}_{1} \dot{\theta}_{1} \\ 0 \end{bmatrix} a1=r¨0+i=12ω1×(ω1×di1)= Cθ1ρ1θ˙1θ˙1Sθ1ρ1θ˙1θ˙10

a 2 = r ¨ 0 + ∑ i = 1 2 ω 2 × ( ω 2 × d i 2 ) = [ − C θ 1 l θ ˙ 1 θ ˙ 1 − C ( θ 1 + θ 2 ) ρ 2 ( θ 1 ˙ + θ 2 ˙ ) ( θ ˙ 1 + θ ˙ 2 ) − S θ 1 l θ ˙ 1 θ ˙ 1 − S ( θ 1 + θ 2 ) ρ 2 ( θ 1 ˙ + θ 2 ˙ ) ( θ ˙ 1 + θ ˙ 2 ) 0 ] \boldsymbol{a}_{2} = \boldsymbol{\ddot{r}}_0 + \sum_{i=1}^{2}\boldsymbol{\omega}_{2} \times (\boldsymbol{\omega}_{2} \times \boldsymbol{d}i2) = \begin{bmatrix} -C\theta_{1}l\dot{\theta}_{1} \dot{\theta}_{1}- C(\theta_{1}+\theta_{2}) \rho_{2}(\dot{\theta_{1}}+\dot{\theta_{2}})(\dot{\theta}_{1}+\dot{\theta}_{2})\\ -S\theta_{1}l\dot{\theta}_{1} \dot{\theta}_{1}- S(\theta_{1}+\theta_{2}) \rho_{2}(\dot{\theta_{1}}+\dot{\theta_{2}})(\dot{\theta}_{1}+\dot{\theta}_{2}) \\ 0 \end{bmatrix} a2=r¨0+i=12ω2×(ω2×di2)= Cθ1lθ˙1θ˙1C(θ1+θ2)ρ2(θ1˙+θ2˙)(θ˙1+θ˙2)Sθ1lθ˙1θ˙1S(θ1+θ2)ρ2(θ1˙+θ2˙)(θ˙1+θ˙2)0

将式 ( 20 ) (20) (20)和式 ( 26 ) (26) (26)带入得

r ˙ ‾ = ( T ‾ d ‾ ) T × Ω ‾ + s ‾ (42) \underline{\boldsymbol{\dot{r}}} = (\underline{T}\underline{\boldsymbol{d}})^{\mathrm{T}} \times \underline{\boldsymbol{\Omega}} + \underline{\boldsymbol{s}} \tag{42} r˙=(Td)T×Ω+s(42)

r ¨ ‾ = ( T ‾ d ‾ ) T × ( Ω ˙ ‾ + h ‾ ) + s ˙ ‾ (43) \underline{\boldsymbol{\ddot{r}}} = (\underline{T}\underline{\boldsymbol{d}})^{\mathrm{T}} \times (\underline{\boldsymbol{\dot{\Omega}}} + \underline{\boldsymbol{h}}) + \underline{\boldsymbol{\dot{s}}} \tag{43} r¨=(Td)T×(Ω˙+h)+s˙(43)

其中

s ‾ = r ˙ 0 1 ‾ n − d ‾ T × ( ω 0 1 ‾ n ) (44) \underline{\boldsymbol{s}} = \boldsymbol{\dot{r}}_{0}\underline{1}_{n} - \underline{\boldsymbol{d}}^{\mathrm{T}} \times (\boldsymbol{\omega}_{0}\underline{1}_{n}) \tag{44} s=r˙01ndT×(ω01n)(44)

由式 ( 16 ) (16) (16)、式 ( 17 ) (17) (17)将式 ( 26 ) (26) (26)写成广义坐标的形式,有

r ˙ ‾ = α ‾ q ˙ ‾ + s (45) \underline{\boldsymbol{\dot{r}}} = \underline{\boldsymbol{\alpha}}\underline{\dot{q}} + \boldsymbol{s} \tag{45} r˙=αq˙+s(45)

r ¨ ‾ = α ‾ q ¨ ‾ + u (46) \underline{\boldsymbol{\ddot{r}}} = \underline{\boldsymbol{\alpha}}\underline{\ddot{q}} + \boldsymbol{u} \tag{46} r¨=αq¨+u(46)

其中

α ‾ = − ( p ‾ T ‾ × d ‾ ) T = [ [ p 1 0 0 p 2 ] [ 1 1 0 1 ] × [ d 11 d 12 0 d 22 ] ] T = [ α 11 α 12 α 21 α 22 ] T = [ p 1 × d 11 p 1 × ( d 12 + d 22 ) 0 p 2 × d 22 ] T (47) \underline{\boldsymbol{\alpha}} = - (\underline{\boldsymbol{p}}\underline{T} \times \underline{\boldsymbol{d}})^{\mathrm{T}} = \begin{bmatrix} \begin{bmatrix} \boldsymbol{p}_{1} & 0 \\ 0 & \boldsymbol{p}_{2} \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ \end{bmatrix} \times \begin{bmatrix} \boldsymbol{d}_{11} & \boldsymbol{d}_{12} \\ 0 & \boldsymbol{d}_{22} \\ \end{bmatrix} \end{bmatrix}^{\mathrm{T}} = \\ \begin{bmatrix} \boldsymbol{\alpha}_{11} & \boldsymbol{\alpha}_{12}\\ \boldsymbol{\alpha}_{21} & \boldsymbol{\alpha}_{22} \end{bmatrix}^{\mathrm{T}} = \begin{bmatrix} \boldsymbol{p}_{1} \times \boldsymbol{d}_{11} & \boldsymbol{p}_{1}\times (\boldsymbol{d}_{12}+\boldsymbol{d}_{22}) \\ \boldsymbol{0} & \boldsymbol{p}_{2}\times \boldsymbol{d}_{22} \end{bmatrix}^{\mathrm{T}} \tag{47} α=(pT×d)T=[[p100p2][1011]×[d110d12d22]]T=[α11α21α12α22]T=[p1×d110p1×(d12+d22)p2×d22]T(47)

其中

α 11 = [ − S θ 1 ρ 1 C θ 1 ρ 1 0 ] T (48) \boldsymbol{\alpha}_{11} = \begin{bmatrix} -S\theta_{1}\rho_{1} & C\theta_{1}\rho_{1} & 0 \end{bmatrix}^{\mathrm{T}} \tag{48} α11=[Sθ1ρ1Cθ1ρ10]T(48)

α 12 = [ − S θ 1 l − S ( θ 1 + θ 2 ) ρ 2 C θ 1 l + C ( θ 1 + θ 2 ) ρ 2 0 ] T (49) \boldsymbol{\alpha}_{12} = \begin{bmatrix} -S\theta_{1}l -S(\theta_{1}+\theta_{2}) \rho_{2} & C\theta_{1}l + C(\theta_{1}+\theta_{2}) \rho_{2} & 0 \end{bmatrix}^{\mathrm{T}} \tag{49} α12=[Sθ1lS(θ1+θ2)ρ2Cθ1l+C(θ1+θ2)ρ20]T(49)

α 21 = 0 (50) \boldsymbol{\alpha}_{21} = \boldsymbol{0} \tag{50} α21=0(50)

α 22 = [ − S ( θ 1 + θ 2 ) ρ 2 C ( θ 1 + θ 2 ) ρ 2 0 ] T (51) \boldsymbol{\alpha}_{22} = \begin{bmatrix} -S(\theta_{1}+\theta_{2}) \rho_{2} & C(\theta_{1}+\theta_{2}) \rho_{2} & 0 \end{bmatrix}^{\mathrm{T}} \tag{51} α22=[S(θ1+θ2)ρ2C(θ1+θ2)ρ20]T(51)

u ‾ = a − d ‾ T × σ ‾ = [ u 1 u 2 ] (52) \underline{\boldsymbol{u}} = \boldsymbol{a} - \underline{\boldsymbol{d}}^{\mathrm{T}} \times \underline{\boldsymbol{\sigma}} = \begin{bmatrix} \boldsymbol{u}_{1} \\ \boldsymbol{u}_{2} \end{bmatrix} \tag{52} u=adT×σ=[u1u2](52)

其中

u 1 = [ − C θ 1 ρ 1 θ ˙ 1 θ ˙ 1 − S θ 1 ρ 1 θ ˙ 1 θ ˙ 1 0 ] T (53) \boldsymbol{u}_{1} = \begin{bmatrix} -C\theta_{1}\rho_{1}\dot{\theta}_{1} \dot{\theta}_{1} \\ -S\theta_{1}\rho_{1}\dot{\theta}_{1} \dot{\theta}_{1} \\ 0 \end{bmatrix}^{\mathrm{T}} \tag{53} u1= Cθ1ρ1θ˙1θ˙1Sθ1ρ1θ˙1θ˙10 T(53)

u 2 = [ − C θ 1 l θ ˙ 1 θ ˙ 1 − C ( θ 1 + θ 2 ) ρ 2 ( θ 1 ˙ + θ 2 ˙ ) ( θ ˙ 1 + θ ˙ 2 ) − S θ 1 l θ ˙ 1 θ ˙ 1 − S ( θ 1 + θ 2 ) ρ 2 ( θ 1 ˙ + θ 2 ˙ ) ( θ ˙ 1 + θ ˙ 2 ) 0 ] T (54) \boldsymbol{u}_{2} = \begin{bmatrix} -C\theta_{1}l\dot{\theta}_{1} \dot{\theta}_{1}- C(\theta_{1}+\theta_{2}) \rho_{2}(\dot{\theta_{1}}+\dot{\theta_{2}})(\dot{\theta}_{1}+\dot{\theta}_{2})\\ -S\theta_{1}l\dot{\theta}_{1} \dot{\theta}_{1}- S(\theta_{1}+\theta_{2}) \rho_{2}(\dot{\theta_{1}}+\dot{\theta_{2}})(\dot{\theta}_{1}+\dot{\theta}_{2}) \\ 0 \end{bmatrix}^{\mathrm{T}} \tag{54} u2= Cθ1lθ˙1θ˙1C(θ1+θ2)ρ2(θ1˙+θ2˙)(θ˙1+θ˙2)Sθ1lθ˙1θ˙1S(θ1+θ2)ρ2(θ1˙+θ2˙)(θ˙1+θ˙2)0 T(54)

(4)力元运动学

力元描述多刚体中除理想约束之外的主动内力称为力元,描述力元有力元关联矩阵 S ‾ e \underline{S}^{e} Se力元矢量矩阵 C ‾ e \underline{\boldsymbol{C}}^{e} Ce

对于此双摆系统没有力元,因此

S ‾ e = 0 \underline{S}^{e} = \boldsymbol{0} Se=0

C ‾ e = 0 ‾ \underline{\boldsymbol{C}}^{e} = \underline{\boldsymbol{0}} Ce=0

  • 12
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值