双复摆模型动力学建模(三)

(5)相对树系统求解动力学方程

本章参考《多体系统动力学》(刘延柱)P95的相对坐标法求解有根树系统,利用基于高斯原理的动力学方程,直接使用结论。

A ‾ q ¨ ‾ = B ‾ (55) \underline{A} \underline{\ddot{q}} = \underline{B} \tag{55} Aq¨=B(55)

其中

A ‾ = α ‾ T ⋅ m ‾ α ‾ + β ‾ T ⋅ J ‾ ⋅ β ‾ (56) \underline{A} = \underline{\boldsymbol{\alpha}}^{\mathrm{T}} \cdot \underline{m}\underline{\boldsymbol{\alpha}} + \underline{\boldsymbol{\beta}}^{\mathrm{T}} \cdot \underline{\boldsymbol{J}} \cdot \underline{\boldsymbol{\beta}} \tag{56} A=αTmα+βTJβ(56)

B ‾ = α ‾ T ⋅ ( F ‾ g − m ‾ u ‾ ) + β ‾ T ⋅ ( M ‾ g − J ‾ ⋅ σ ‾ − ε ‾ ) + γ ‾ T ⋅ F ‾ e + p ‾ ⋅ M ‾ a (57) \underline{B} = \underline{\boldsymbol{\alpha}}^{\mathrm{T}} \cdot (\underline{F}^{g} - \underline{m}\underline{\boldsymbol{u}}) + \underline{\boldsymbol{\beta}}^{\mathrm{T}} \cdot (\underline{\boldsymbol{M}}^{g}-\underline{\boldsymbol{J}} \cdot \underline{\boldsymbol{\sigma}} - \underline{\boldsymbol{\boldsymbol{\varepsilon}}}) + \underline{\boldsymbol{\gamma}}^{\mathrm{T}} \cdot \underline{\boldsymbol{F}}^{e} + \underline{\boldsymbol{p}} \cdot \underline{\boldsymbol{M}}^{a} \tag{57} B=αT(Fgmu)+βT(MgJσε)+γTFe+pMa(57)

其中

ε i = ω i × ( J i ⋅ ω i ) ( i = 1 , 2 ) \boldsymbol{\varepsilon}_{i} = \boldsymbol{\omega}_{i} \times (\boldsymbol{J}_{i} \cdot \boldsymbol{\omega}_{i}) (i=1,2) εi=ωi×(Jiωi)(i=1,2)

对于此系统,有 m ‾ \underline{m} m对各刚体质量进行描述

m ‾ = d i a g ( m 1 , m 2 , … , m n ) = [ m 1 0 0 m 2 ] \underline{m} = diag(m_1,m_2,\ldots,m_n) = \begin{bmatrix} m_1 & 0\\ 0 & m_2 \end{bmatrix} m=diag(m1,m2,,mn)=[m100m2]

其中 m n m_n mn为第 n n n个刚体的质量

有转动惯量矩阵 J ‾ \underline{\boldsymbol{J}} J对各方向的角速度与角动量的关系进行描述。

J ‾ = d i a g ( J ‾ 1 , J ‾ 2 , … , J ‾ n ) [ J ‾ 1 0 0 J ‾ 2 ] \underline{\boldsymbol{J}} = diag(\underline{J}_1,\underline{J}_2,\ldots,\underline{J}_n) \begin{bmatrix} \underline{J}_1 & 0\\ 0 & \underline{J}_2 \end{bmatrix} J=diag(J1,J2,,Jn)[J100J2]

默认 J ‾ n \underline{J}_n Jn为刚体n中心惯量主轴的惯量矩阵。
α ‾ \underline{\boldsymbol{\alpha}} α, β ‾ \underline{\boldsymbol{\beta}} β上述已给出。

根据书中给出动力学方程中的一项
ε i = ω i × ( J i ⋅ ω i ) \boldsymbol{\varepsilon}_{i} = \boldsymbol{\omega}_{i} \times (\boldsymbol{J}_{i} \cdot \boldsymbol{\omega_{i}}) εi=ωi×(Jiωi)

其中并矢与矢量的标量积可以用其列阵写为矩阵乘法

J i ⋅ ω i = J ‾ i ω ‾ i \boldsymbol{J}_{i} \cdot \boldsymbol{\omega_{i}} = \underline{J}_{i}\underline{\omega}_i Jiωi=Jiωi

ε 1 = ω 1 × ( A 01 J ‾ 1 A 01 T ⋅ ω 1 ) = [ 0 0 θ ˙ 1 ] × [ [ C θ 1 − S θ 1 0 0 S θ 1 C θ 1 0 0 0 1 ] [ J 1 1 0 0 0 J 2 2 0 0 0 J 3 3 ] [ C θ 1 S θ 1 0 − S θ 1 C θ 1 0 0 0 1 ] [ 0 0 θ ˙ 1 ] ] = [ 0 0 0 ] \boldsymbol{\varepsilon}_{1} = \boldsymbol{\omega}_{1} \times (\boldsymbol{A}_{01}\underline{J}_{1}\boldsymbol{A}_{01}^{\mathrm{T}} \cdot \boldsymbol{\omega_{1}}) = \\ \begin{bmatrix} 0 \\ 0 \\ \dot{\theta}_{1} \end{bmatrix} \times \begin{bmatrix} \begin{bmatrix} C\theta_{1} & -S\theta_{1} & 0\\ 0S\theta_{1} & C\theta_{1} & 0\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} J_11 & 0 & 0 \\ 0 & J_22 & 0\\ 0 & 0 & J_33 \end{bmatrix} \begin{bmatrix} C\theta_{1} & S\theta_{1} & 0\\ -S\theta_{1} & C\theta_{1} & 0\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ \dot{\theta}_{1} \end{bmatrix} \end{bmatrix} = \\ \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} ε1=ω1×(A01J1A01Tω1)= 00θ˙1 × Cθ10Sθ10Sθ1Cθ10001 J11000J22000J33 Cθ1Sθ10Sθ1Cθ10001 00θ˙1 = 000

同理

ε 2 = ω 2 × ( A 02 J ‾ 2 A 02 T ⋅ ω 2 ) = [ 0 0 0 ] \boldsymbol{\varepsilon}_{2} = \boldsymbol{\omega}_{2} \times (\boldsymbol{A}_{02}\underline{J}_{2}\boldsymbol{A}_{02}^{\mathrm{T}} \cdot \boldsymbol{\omega_{2}}) = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} ε2=ω2×(A02J2A02Tω2)= 000

所以

ε ‾ = 0 ‾ \underline{\boldsymbol{\varepsilon}} = \underline{\boldsymbol{0}} ε=0

前面已经得出

σ ‾ = 0 ‾ \underline{\boldsymbol{\sigma}} = \underline{\boldsymbol{0}} σ=0

外力对质心的主矢为

F ‾ g = [ F 1 g F 2 g ] T \underline{\boldsymbol{F}}^{g} = \begin{bmatrix} \boldsymbol{F}_{1}^{g} & \boldsymbol{F}_{2}^{g} \end{bmatrix}^{\mathrm{T}} Fg=[F1gF2g]T

其中在惯性系下的列阵

F 1 g = [ m 1 g 0 0 ] T \boldsymbol{F}_{1}^{g} = \begin{bmatrix} m_{1}g & 0 & 0 \end{bmatrix}^{\mathrm{T}} F1g=[m1g00]T

F 2 g = [ m 2 g 0 0 ] T \boldsymbol{F}_{2}^{g} = \begin{bmatrix} m_{2}g & 0 & 0 \end{bmatrix}^{\mathrm{T}} F2g=[m2g00]T

外力对质心的主矩在惯性系下的列阵为

M ‾ g = [ M 1 g M 2 g ] T = [ 0 0 ] T \underline{\boldsymbol{M}}^{g} = \begin{bmatrix} \boldsymbol{M}_{1}^{g} & \boldsymbol{M}_{2}^{g} \end{bmatrix}^{\mathrm{T}} = \begin{bmatrix} \boldsymbol{0} & \boldsymbol{0} \end{bmatrix}^{\mathrm{T}} Mg=[M1gM2g]T=[00]T

B i ( j ) B_{i(j)} Bi(j)作用于 B j B_{j} Bj的主动力产生的相对于 O j O_j Oj主矩为 M j a \boldsymbol{M}_{j}^{a} Mja,则

M ‾ a = [ M 1 a M 2 a ] T \underline{\boldsymbol{M}}^{a} = \begin{bmatrix} \boldsymbol{M}_{1}^{a} & \boldsymbol{M}_{2}^{a} \end{bmatrix}^{\mathrm{T}} Ma=[M1aM2a]T

这也是电机输出的力矩,即控制力矩。

系统没有力元 γ ‾ = 0 \underline{\boldsymbol{\gamma}} = 0 γ=0

矢量列正 u ‾ \underline{\boldsymbol{u}} u,在前文已经给出,至此,构建动力学方程的所以矩阵已经得到,带入式 ( 55 ) (55) (55)、式 ( 56 ) (56) (56)、式 ( 57 ) (57) (57)中,得到(所有的向量张量都化到惯性系下计算)

A ‾ = [ α 11 α 12 α 21 α 22 ] ⋅ [ m 1 α 11 m 1 α 21 m 2 α 12 m 2 α 22 ] + [ e 3 0 e 3 0 0 ‾ e 3 1 ] ⋅ [ J 1 0 0 J 2 ] ⋅ [ e 3 0 0 ‾ e 3 0 e 3 1 ] = [ m 1 α 11 ⋅ α 11 + m 2 α 12 ⋅ α 12 m 1 α 11 ⋅ α 21 + m 2 α 12 ⋅ α 22 m 1 α 21 ⋅ α 11 + m 2 α 22 ⋅ α 12 m 1 α 21 ⋅ α 21 + m 2 α 22 ⋅ α 22 ] + [ e 3 0 e 3 0 0 ‾ e 3 1 ] ⋅ [ J ‾ 1 e ‾ 3 0 0 J ‾ 2 e ‾ 3 0 J ‾ 2 e ‾ 3 1 ] = [ m 1 α 11 ⋅ α 11 + m 2 α 12 ⋅ α 12 + e 3 0 J ‾ 1 e ‾ 3 0 + e 3 0 J ‾ 2 e ‾ 3 0 m 1 α 11 ⋅ α 21 + m 2 α 12 ⋅ α 22 + e 3 0 J ‾ 2 e ‾ 3 1 m 1 α 21 ⋅ α 11 + m 2 α 22 ⋅ α 12 + e 3 1 J ‾ 2 e ‾ 3 0 m 1 α 21 ⋅ α 21 + m 2 α 22 ⋅ α 22 + e 3 1 J ‾ 2 e ‾ 3 1 ] = [ A 11 A 12 A 21 A 22 ] \underline{A}= \begin{bmatrix} \boldsymbol{\alpha}_{11} & \boldsymbol{\alpha}_{12}\\ \boldsymbol{\alpha}_{21} & \boldsymbol{\alpha}_{22} \end{bmatrix} \cdot \begin{bmatrix} m_1\boldsymbol{\alpha}_{11} & m_1\boldsymbol{\alpha}_{21}\\ m_2\boldsymbol{\alpha}_{12} & m_2\boldsymbol{\alpha}_{22} \end{bmatrix} + \begin{bmatrix} \boldsymbol{e^{0}_{3}} & \boldsymbol{e^{0}_{3}}\\ \underline{\boldsymbol{0}}& \boldsymbol{e^{1}_{3}} \end{bmatrix} \cdot \begin{bmatrix} \boldsymbol{J}_1 & 0\\ 0 & \boldsymbol{J}_2 \end{bmatrix} \cdot \begin{bmatrix} \boldsymbol{e^{0}_{3}} & \underline{\boldsymbol{0}}\\ \boldsymbol{e^{0}_{3}}& \boldsymbol{e^{1}_{3}} \end{bmatrix} = \\ \begin{bmatrix} m_1\boldsymbol{\alpha}_{11}\cdot\boldsymbol{\alpha}_{11} + m_2\boldsymbol{\alpha}_{12}\cdot\boldsymbol{\alpha}_{12}& m_1\boldsymbol{\alpha}_{11}\cdot\boldsymbol{\alpha}_{21} + m_2\boldsymbol{\alpha}_{12}\cdot\boldsymbol{\alpha}_{22}\\ m_1\boldsymbol{\alpha}_{21}\cdot\boldsymbol{\alpha}_{11} + m_2\boldsymbol{\alpha}_{22}\cdot\boldsymbol{\alpha}_{12}& m_1\boldsymbol{\alpha}_{21}\cdot\boldsymbol{\alpha}_{21} + m_2\boldsymbol{\alpha}_{22}\cdot\boldsymbol{\alpha}_{22} \end{bmatrix} + \\ \begin{bmatrix} \boldsymbol{e^{0}_{3}} & \boldsymbol{e^{0}_{3}}\\ \underline{\boldsymbol{0}}& \boldsymbol{e^{1}_{3}} \end{bmatrix} \cdot \begin{bmatrix} \underline{J}_1\underline{e}_3^0 & 0\\ \underline{J}_2\underline{e}_3^0 & \underline{J}_2\underline{e}_3^1 \end{bmatrix} = \\ \begin{bmatrix} m_1\boldsymbol{\alpha}_{11}\cdot\boldsymbol{\alpha}_{11} + m_2\boldsymbol{\alpha}_{12}\cdot\boldsymbol{\alpha}_{12} + \boldsymbol{e^{0}_{3}}\underline{J}_1\underline{e}_3^0 + \boldsymbol{e^{0}_{3}}\underline{J}_2\underline{e}_3^0 & m_1\boldsymbol{\alpha}_{11}\cdot\boldsymbol{\alpha}_{21} + m_2\boldsymbol{\alpha}_{12}\cdot\boldsymbol{\alpha}_{22} + \boldsymbol{e^{0}_{3}}\underline{J}_2\underline{e}_3^1 \\ m_1\boldsymbol{\alpha}_{21}\cdot\boldsymbol{\alpha}_{11} + m_2\boldsymbol{\alpha}_{22}\cdot\boldsymbol{\alpha}_{12} + \boldsymbol{e^{1}_{3}}\underline{J}_2\underline{e}_3^0 & m_1\boldsymbol{\alpha}_{21}\cdot\boldsymbol{\alpha}_{21} + m_2\boldsymbol{\alpha}_{22}\cdot\boldsymbol{\alpha}_{22} + \boldsymbol{e^{1}_{3}}\underline{J}_2\underline{e}_3^1 \end{bmatrix} = \\ \begin{bmatrix} A_{11} & A_{12}\\ A_{21} & A_{22} \end{bmatrix} A=[α11α21α12α22][m1α11m2α12m1α21m2α22]+[e300e30e31][J100J2][e30e300e31]=[m1α11α11+m2α12α12m1α21α11+m2α22α12m1α11α21+m2α12α22m1α21α21+m2α22α22]+[e300e30e31][J1e30J2e300J2e31]=[m1α11α11+m2α12α12+e30J1e30+e30J2e30m1α21α11+m2α22α12+e31J2e30m1α11α21+m2α12α22+e30J2e31m1α21α21+m2α22α22+e31J2e31]=[A11A21A12A22]

A 11 = m 1 ρ 1 2 + m 2 ( l 2 + ρ 2 2 + 2 C θ 2 l ρ 2 ) + J 1 + J 2 A_{11} = m_1\rho_1^{2} + m_2(l^2 + \rho_2^2 + 2C\theta_{2}l\rho_2)+J_1+J_2 A11=m1ρ12+m2(l2+ρ22+2Cθ2lρ2)+J1+J2

A 12 = m 2 ( ρ 2 2 + C θ 2 l ρ 2 ) + J 2 A_{12} = m_2(\rho_2^2 + C\theta_2l\rho_2)+J_2 A12=m2(ρ22+Cθ2lρ2)+J2

A 21 = m 2 ( ρ 2 2 + C θ 2 l ρ 2 ) + J 2 A_{21} = m_2(\rho_2^2 + C\theta_2l\rho_2)+J_2 A21=m2(ρ22+Cθ2lρ2)+J2

A 22 = m 2 ρ 2 2 + J 2 A_{22} = m_2\rho_2^2 +J_2 A22=m2ρ22+J2

其中

B ‾ = [ α 11 α 12 α 21 α 22 ] ⋅ [ [ F 1 g F 2 g ] − [ m 1 0 0 m 2 ] [ u 1 u 2 ] ] + [ e 3 0 e 3 0 0 ‾ e 3 1 ] ⋅ [ [ M 1 g M 2 g ] − [ J 1 0 0 J 2 ] ⋅ 0 ‾ − 0 ‾ ] + 0 ‾ ⋅ F ‾ e + [ [ e 3 0 ] 0 0 A 0 1 [ e 3 1 ] ] ⋅ [ M 1 a M 2 a ] = [ α 11 ⋅ ( F 1 g − m 1 u 1 ) + α 12 ⋅ ( F 2 g − m 2 u 2 ) α 21 ⋅ ( F 1 g − m 1 u 1 ) + α 22 ⋅ ( F 2 g − m 2 u 2 ) ] + [ e 3 0 ⋅ M 1 g + e 3 0 M 2 g e 3 1 ⋅ M 2 g ] + [ [ e 3 0 ] ⋅ M 1 a A 0 1 [ e 3 1 ] ⋅ M 2 a ] = [ [ − S θ 1 ρ 1 C θ 1 ρ 1 0 ] ⋅ [ m 1 g + m 1 C θ 1 ρ 1 θ ˙ 1 θ ˙ 1 m 1 S θ 1 ρ 1 θ ˙ 1 θ ˙ 1 0 ] + [ − S θ 1 l − S ( θ 1 + θ 2 ) ρ 2 C θ 1 l + C ( θ 1 + θ 2 ) ρ 2 0 ] ⋅ [ m 2 g + m 2 ( C θ 1 l θ ˙ 1 θ ˙ 1 + C ( θ 1 + θ 2 ) ρ 2 ( θ 1 ˙ + θ 2 ˙ ) ( θ ˙ 1 + θ ˙ 2 ) ) m 2 ( S θ 1 l θ ˙ 1 θ ˙ 1 + S ( θ 1 + θ 2 ) ρ 2 ( θ 1 ˙ + θ 2 ˙ ) ( θ ˙ 1 + θ ˙ 2 ) ) 0 ] [ 0 0 0 ] ⋅ [ m 1 g + m 1 C θ 1 ρ 1 θ ˙ 1 θ ˙ 1 m 1 S θ 1 ρ 1 θ ˙ 1 θ ˙ 1 0 ] + [ − S ( θ 1 + θ 2 ) ρ 2 C ( θ 1 + θ 2 ) ρ 2 0 ] ⋅ [ m 2 g + m 2 ( C θ 1 l θ ˙ 1 θ ˙ 1 + C ( θ 1 + θ 2 ) ρ 2 ( θ 1 ˙ + θ 2 ˙ ) ( θ ˙ 1 + θ ˙ 2 ) ) m 2 ( S θ 1 l θ ˙ 1 θ ˙ 1 + S ( θ 1 + θ 2 ) ρ 2 ( θ 1 ˙ + θ 2 ˙ ) ( θ ˙ 1 + θ ˙ 2 ) ) 0 ] ] + [ 0 0 ] + [ M 1 a M 2 a ] = [ − S θ 1 ρ 1 ( m 1 g + m 1 C θ 1 ρ 1 θ ˙ 1 θ ˙ 1 ) + C θ 1 ρ 1 ( m 1 S θ 1 ρ 1 θ ˙ 1 θ ˙ 1 ) + ( − S θ 1 l − S ( θ 1 + θ 2 ) ρ 2 ) ( m 2 g + m 2 ( C θ 1 l θ ˙ 1 θ ˙ 1 + C ( θ 1 + θ 2 ) ρ 2 ( θ 1 ˙ + θ 2 ˙ ) ( θ ˙ 1 + θ ˙ 2 ) ) ) + ( C θ 1 l + C ( θ 1 + θ 2 ) ρ 2 ) m 2 ( S θ 1 l θ ˙ 1 θ ˙ 1 + S ( θ 1 + θ 2 ) ρ 2 ( θ 1 ˙ + θ 2 ˙ ) ( θ ˙ 1 + θ ˙ 2 ) ) + M 1 a − S ( θ 1 + θ 2 ) ρ 2 ( m 2 g + m 2 ( C θ 1 l θ ˙ 1 θ ˙ 1 + C ( θ 1 + θ 2 ) ρ 2 ( θ 1 ˙ + θ 2 ˙ ) ( θ ˙ 1 + θ ˙ 2 ) ) ) + C ( θ 1 + θ 2 ) ρ 2 ( m 2 ( S θ 1 l θ ˙ 1 θ ˙ 1 + S ( θ 1 + θ 2 ) ρ 2 ( θ 1 ˙ + θ 2 ˙ ) ( θ ˙ 1 + θ ˙ 2 ) ) ) + M 2 a ] = [ − m 1 g ρ 1 S θ 1 − m 2 ( g ( l S θ 1 + ρ 2 S ( θ 1 + θ 2 ) ) + ρ 2 l ( θ ˙ 2 2 + 2 θ ˙ 1 θ ˙ 2 ) S θ 2 ) + M 1 a − m 2 ρ 2 ( g S ( θ 1 + θ 2 ) + l θ ˙ 1 2 S θ 2 ) + M 2 a ] \underline{B} = \begin{bmatrix} \boldsymbol{\alpha}_{11} & \boldsymbol{\alpha}_{12}\\ \boldsymbol{\alpha}_{21} & \boldsymbol{\alpha}_{22} \end{bmatrix} \cdot \begin{bmatrix} \begin{bmatrix} \boldsymbol{F}_{1}^{g} \\ \boldsymbol{F}_{2}^{g} \end{bmatrix} - \begin{bmatrix} m_1 & 0\\ 0 & m_2 \end{bmatrix} \begin{bmatrix} \boldsymbol{u}_{1} \\ \boldsymbol{u}_{2} \end{bmatrix} \end{bmatrix} +\\ \begin{bmatrix} \boldsymbol{e^{0}_{3}} & \boldsymbol{e^{0}_{3}}\\ \underline{\boldsymbol{0}} & \boldsymbol{e^{1}_{3}} \end{bmatrix} \cdot \begin{bmatrix} \begin{bmatrix} \boldsymbol{M}_{1}^{g} \\ \boldsymbol{M}_{2}^{g} \end{bmatrix} - \begin{bmatrix} \boldsymbol{J}_1 & 0 \\ 0 & \boldsymbol{J}_2 \end{bmatrix} \cdot \underline{\boldsymbol{0}} - \underline{\boldsymbol{0}} \end{bmatrix} + \underline{\boldsymbol{0}} \cdot \underline{\boldsymbol{F}}^{e} + \begin{bmatrix} [\boldsymbol{e^{0}_{3}}] & 0 \\ 0 & \boldsymbol{A}_01[\boldsymbol{e^{1}_{3}}] \end{bmatrix} \cdot \begin{bmatrix} \boldsymbol{M}_{1}^{a} \\ \boldsymbol{M}_{2}^{a} \end{bmatrix} = \\ \begin{bmatrix} \boldsymbol{\alpha}_{11}\cdot(\boldsymbol{F}_{1}^{g} - m_1\boldsymbol{u}_1) + \boldsymbol{\alpha}_{12}\cdot(\boldsymbol{F}_{2}^{g} - m_2\boldsymbol{u}_2) \\ \boldsymbol{\alpha}_{21}\cdot(\boldsymbol{F}_{1}^{g} - m_1\boldsymbol{u}_1) + \boldsymbol{\alpha}_{22}\cdot(\boldsymbol{F}_{2}^{g} - m_2\boldsymbol{u}_2) \end{bmatrix} + \begin{bmatrix} \boldsymbol{e^{0}_{3}}\cdot\boldsymbol{M}_{1}^{g} + \boldsymbol{e^{0}_{3}}\boldsymbol{M}_{2}^{g} \\ \boldsymbol{e^{1}_{3}}\cdot\boldsymbol{M}_{2}^{g} \end{bmatrix} + \begin{bmatrix} [\boldsymbol{e^{0}_{3}}]\cdot\boldsymbol{M}_{1}^{a}\\ \boldsymbol{A}_01[\boldsymbol{e^{1}_{3}}]\cdot\boldsymbol{M}_{2}^{a} \end{bmatrix} = \\ \begin{bmatrix} \begin{bmatrix} -S\theta_{1}\rho_{1} \\ C\theta_{1}\rho_{1} \\ 0 \end{bmatrix} \cdot \begin{bmatrix} m_1g+m_1C\theta_{1}\rho_{1}\dot{\theta}_{1} \dot{\theta}_{1} \\ m_1S\theta_{1}\rho_{1}\dot{\theta}_{1} \dot{\theta}_{1} \\ 0 \end{bmatrix} + \begin{bmatrix} -S\theta_{1}l -S(\theta_{1}+\theta_{2}) \rho_{2} \\ C\theta_{1}l + C(\theta_{1}+\theta_{2}) \rho_{2} \\ 0 \end{bmatrix} \cdot\\ \begin{bmatrix} m_2g + m_2(C\theta_{1}l\dot{\theta}_{1} \dot{\theta}_{1}+ C(\theta_{1}+\theta_{2}) \rho_{2}(\dot{\theta_{1}}+\dot{\theta_{2}})(\dot{\theta}_{1}+\dot{\theta}_{2})) \\ m_2(S\theta_{1}l\dot{\theta}_{1} \dot{\theta}_{1}+ S(\theta_{1}+\theta_{2}) \rho_{2}(\dot{\theta_{1}}+\dot{\theta_{2}})(\dot{\theta}_{1}+\dot{\theta}_{2})) \\ 0 \end{bmatrix} \\ \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \cdot \begin{bmatrix} m_1g+m_1C\theta_{1}\rho_{1}\dot{\theta}_{1} \dot{\theta}_{1} \\ m_1S\theta_{1}\rho_{1}\dot{\theta}_{1} \dot{\theta}_{1} \\ 0 \end{bmatrix} + \begin{bmatrix} -S(\theta_{1}+\theta_{2}) \rho_{2} \\ C(\theta_{1}+\theta_{2}) \rho_{2} \\ 0 \end{bmatrix} \cdot\\ \begin{bmatrix} m_2g + m_2(C\theta_{1}l\dot{\theta}_{1} \dot{\theta}_{1}+ C(\theta_{1}+\theta_{2}) \rho_{2}(\dot{\theta_{1}}+\dot{\theta_{2}})(\dot{\theta}_{1}+\dot{\theta}_{2})) \\ m_2(S\theta_{1}l\dot{\theta}_{1} \dot{\theta}_{1}+ S(\theta_{1}+\theta_{2}) \rho_{2}(\dot{\theta_{1}}+\dot{\theta_{2}})(\dot{\theta}_{1}+\dot{\theta}_{2})) \\ 0 \end{bmatrix} \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \end{bmatrix} + \begin{bmatrix} M_1^{a} \\ M_2^{a} \end{bmatrix} = \\ \begin{bmatrix} -S\theta_{1}\rho_{1}(m_1g+m_1C\theta_{1}\rho_{1}\dot{\theta}_{1} \dot{\theta}_{1}) + C\theta_{1}\rho_{1}( m_1S\theta_{1}\rho_{1}\dot{\theta}_{1} \dot{\theta}_{1}) + \\ (-S\theta_{1}l -S(\theta_{1}+\theta_{2}) \rho_{2})(m_2g + m_2(C\theta_{1}l\dot{\theta}_{1} \dot{\theta}_{1}+ C(\theta_{1}+\theta_{2}) \rho_{2}(\dot{\theta_{1}}+\dot{\theta_{2}})(\dot{\theta}_{1}+\dot{\theta}_{2}))) +\\ (C\theta_{1}l + C(\theta_{1}+\theta_{2}) \rho_{2})m_2(S\theta_{1}l\dot{\theta}_{1} \dot{\theta}_{1}+ S(\theta_{1}+\theta_{2}) \rho_{2}(\dot{\theta_{1}}+\dot{\theta_{2}})(\dot{\theta}_{1}+\dot{\theta}_{2})) + M_1^{a} \\ -S(\theta_{1}+\theta_{2}) \rho_{2}(m_2g + m_2(C\theta_{1}l\dot{\theta}_{1} \dot{\theta}_{1}+ C(\theta_{1}+\theta_{2}) \rho_{2}(\dot{\theta_{1}}+\dot{\theta_{2}})(\dot{\theta}_{1}+\dot{\theta}_{2})))+\\ C(\theta_{1}+\theta_{2}) \rho_{2}( m_2(S\theta_{1}l\dot{\theta}_{1} \dot{\theta}_{1}+ S(\theta_{1}+\theta_{2}) \rho_{2}(\dot{\theta_{1}}+\dot{\theta_{2}})(\dot{\theta}_{1}+\dot{\theta}_{2}))) + M_2^{a} \end{bmatrix} = \\ \begin{bmatrix} -m_1g\rho_1S\theta_1-m_2(g(lS\theta_1+\rho_2S(\theta_1+\theta_2))+\rho_2l(\dot{\theta}_2^2 + 2\dot{\theta}_1\dot{\theta}_2)S\theta_2)+M_1^{a} \\ -m_2\rho_2(gS(\theta_1+\theta_2)+l\dot{\theta}_1^{2}S\theta_2)+M_2^{a} \end{bmatrix} B=[α11α21α12α22][[F1gF2g][m100m2][u1u2]]+[e300e30e31][[M1gM2g][J100J2]00]+0Fe+[[e30]00A01[e31]][M1aM2a]=[α11(F1gm1u1)+α12(F2gm2u2)α21(F1gm1u1)+α22(F2gm2u2)]+[e30M1g+e30M2ge31M2g]+[[e30]M1aA01[e31]M2a]= Sθ1ρ1Cθ1ρ10 m1g+m1Cθ1ρ1θ˙1θ˙1m1Sθ1ρ1θ˙1θ˙10 + Sθ1lS(θ1+θ2)ρ2Cθ1l+C(θ1+θ2)ρ20 m2g+m2(Cθ1lθ˙1θ˙1+C(θ1+θ2)ρ2(θ1˙+θ2˙)(θ˙1+θ˙2))m2(Sθ1lθ˙1θ˙1+S(θ1+θ2)ρ2(θ1˙+θ2˙)(θ˙1+θ˙2))0 000 m1g+m1Cθ1ρ1θ˙1θ˙1m1Sθ1ρ1θ˙1θ˙10 + S(θ1+θ2)ρ2C(θ1+θ2)ρ20 m2g+m2(Cθ1lθ˙1θ˙1+C(θ1+θ2)ρ2(θ1˙+θ2˙)(θ˙1+θ˙2))m2(Sθ1lθ˙1θ˙1+S(θ1+θ2)ρ2(θ1˙+θ2˙)(θ˙1+θ˙2))0 +[00]+[M1aM2a]= Sθ1ρ1(m1g+m1Cθ1ρ1θ˙1θ˙1)+Cθ1ρ1(m1Sθ1ρ1θ˙1θ˙1)+(Sθ1lS(θ1+θ2)ρ2)(m2g+m2(Cθ1lθ˙1θ˙1+C(θ1+θ2)ρ2(θ1˙+θ2˙)(θ˙1+θ˙2)))+(Cθ1l+C(θ1+θ2)ρ2)m2(Sθ1lθ˙1θ˙1+S(θ1+θ2)ρ2(θ1˙+θ2˙)(θ˙1+θ˙2))+M1aS(θ1+θ2)ρ2(m2g+m2(Cθ1lθ˙1θ˙1+C(θ1+θ2)ρ2(θ1˙+θ2˙)(θ˙1+θ˙2)))+C(θ1+θ2)ρ2(m2(Sθ1lθ˙1θ˙1+S(θ1+θ2)ρ2(θ1˙+θ2˙)(θ˙1+θ˙2)))+M2a =[m1gρ1Sθ1m2(g(lSθ1+ρ2S(θ1+θ2))+ρ2l(θ˙22+2θ˙1θ˙2)Sθ2)+M1am2ρ2(gS(θ1+θ2)+lθ˙12Sθ2)+M2a]

由上文定义可知

q ¨ ‾ = [ θ 1 ¨ θ 2 ¨ ] \underline{\ddot{q}} = \begin{bmatrix} \ddot{\theta_1} \\ \ddot{\theta_2} \end{bmatrix} q¨=[θ1¨θ2¨]

将矩阵拆开可以得到

( m 1 ρ 1 2 + m 2 ( l 2 + ρ 2 2 + 2 C θ 2 l ρ 2 ) + J 1 + J 2 ) θ 1 ¨ + ( m 2 ( ρ 2 2 + C θ 2 l ρ 2 ) + J 2 ) θ 2 ¨ = − m 1 g ρ 1 S θ 1 − m 2 ( g ( l S θ 1 + ρ 2 S ( θ 1 + θ 2 ) ) + ρ 2 l ( θ ˙ 2 2 + 2 θ ˙ 1 θ ˙ 2 ) S θ 2 ) + M 1 a (m_1\rho_1^{2} + m_2(l^2 + \rho_2^2 + 2C\theta_{2}l\rho_2)+J_1+J_2)\ddot{\theta_1} + (m_2(\rho_2^2 + C\theta_2l\rho_2)+J_2)\ddot{\theta_2} = \\ -m_1g\rho_1S\theta_1-m_2(g(lS\theta_1+\rho_2S(\theta_1+\theta_2))+\rho_2l(\dot{\theta}_2^2 + 2\dot{\theta}_1\dot{\theta}_2)S\theta_2)+M_1^{a} (m1ρ12+m2(l2+ρ22+2Cθ2lρ2)+J1+J2)θ1¨+(m2(ρ22+Cθ2lρ2)+J2)θ2¨=m1gρ1Sθ1m2(g(lSθ1+ρ2S(θ1+θ2))+ρ2l(θ˙22+2θ˙1θ˙2)Sθ2)+M1a

( m 2 ( ρ 2 2 + C θ 2 l ρ 2 ) + J 2 ) θ 1 ¨ + ( m 2 ρ 2 2 + J 2 ) θ 2 ¨ = − m 2 ρ 2 ( g S ( θ 1 + θ 2 ) + l θ ˙ 1 2 S θ 2 ) + M 2 a (m_2(\rho_2^2 + C\theta_2l\rho_2)+J_2)\ddot{\theta_1} + (m_2\rho_2^2 +J_2)\ddot{\theta_2} = \\ -m_2\rho_2(gS(\theta_1+\theta_2)+l\dot{\theta}_1^{2}S\theta_2)+M_2^{a} (m2(ρ22+Cθ2lρ2)+J2)θ1¨+(m2ρ22+J2)θ2¨=m2ρ2(gS(θ1+θ2)+lθ˙12Sθ2)+M2a

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值