动力学建模算例
1.双摆摆浪运动建模
1.1利用相对坐标法进行求解
(1) 坐标系定义
首先对模型进行简化,如下图所示
这是一个有根树系统,其中
B
i
(
i
=
0
,
1
,
2
)
B_{i}(i=0,1,2)
Bi(i=0,1,2)代表刚体,
B
0
B_{0}
B0为相对于惯性系静止的刚体,称为零刚体,
B
1
B_{1}
B1、
B
2
B_{2}
B2分别对应人的上半身和下半身。
O
i
O_{i}
Oi代表铰链,
O
1
O_{1}
O1为
B
1
B_{1}
B1与
B
0
B_{0}
B0间的铰链,
O
2
O_{2}
O2为
B
2
B_{2}
B2与
B
1
B_{1}
B1间的铰链。以铰链为原点构建坐标系,令
O
0
O_{0}
O0与
O
1
O_{1}
O1重合,以
O
0
O_{0}
O0为原点构建
(
O
0
,
e
0
‾
)
(O_{0},\underline{\boldsymbol{e^{0}}})
(O0,e0),以
O
1
O_{1}
O1为原点构建
(
O
1
,
e
1
‾
)
(O_{1},\underline{\boldsymbol{e^{1}}})
(O1,e1),以
O
2
O_{2}
O2为原点构建
(
O
2
,
e
2
‾
)
(O_{2},\underline{\boldsymbol{e^{2}}})
(O2,e2)。其中
e
i
‾
=
[
e
1
i
e
2
i
e
3
i
]
(
i
=
0
,
1
,
2
)
(1)
\underline{\boldsymbol{e^{i}}} = \begin{bmatrix} \boldsymbol{e^{i}_{1}}& \boldsymbol{e^{i}_{2}}& \boldsymbol{e^{i}_{3}} \end{bmatrix} (i=0,1,2) \tag{1}
ei=[e1ie2ie3i](i=0,1,2)(1)
e 1 i \boldsymbol{e^{i}_{1}} e1i、 e 2 i \boldsymbol{e^{i}_{2}} e2i、 e 3 i \boldsymbol{e^{i}_{3}} e3i为 ( O i , e i ‾ ) (O_{i},\underline{\boldsymbol{e^{i}}}) (Oi,ei)系的三个坐标基。
涉及符号形状:
e
i
‾
\underline{\boldsymbol{e^{i}}}
ei [1X3],元素为[3X1]向量->[3X3]
e
j
i
\boldsymbol{e^{i}_{j}}
eji [3X1],元素为标量。
(2) 多体系统的结构
根据关联矩阵与通路矩阵的定义,关联矩阵
S
0
‾
\underline{\boldsymbol{S_{0}}}
S0、
S
‾
\underline{\boldsymbol{S}}
S和通路矩阵
T
‾
\underline{\boldsymbol{T}}
T为
S
0
‾
=
[
1
0
]
(2)
\underline{\boldsymbol{S_{0}}} = \begin{bmatrix} 1 & 0 \end{bmatrix} \tag{2}
S0=[10](2)
S ‾ = [ − 1 1 0 − 1 ] (3) \underline{\boldsymbol{S}} = \begin{bmatrix} -1 & 1 \\ 0 & -1 \\ \end{bmatrix} \tag{3} S=[−101−1](3)
T ‾ = [ − 1 − 1 0 − 1 ] (4) \underline{\boldsymbol{T}} = \begin{bmatrix} -1 & -1 \\ 0 & -1 \\ \end{bmatrix} \tag{4} T=[−10−1−1](4)
关联矩阵 S ‾ \underline{\boldsymbol{S}} S表示了刚体与铰链的连接关系;通路矩阵 T ‾ \underline{\boldsymbol{T}} T体现了内接刚体运动对外接刚体的影响。
涉及符号形状:
S
‾
\underline{\boldsymbol{S}}
S[2X2]
T
‾
\underline{\boldsymbol{T}}
T[2X2]
(3) 转动较系统的运动学
1)相对转动
定义广义坐标列阵
q
‾
\underline{q}
q与转轴矢量列正
p
‾
\underline{\boldsymbol{p}}
p
q
‾
=
[
[
θ
1
]
[
θ
2
]
]
T
(5)
\underline{q} = \begin{bmatrix} [\theta_{1}] & [\theta_{2}] \end{bmatrix}^{\mathrm{T}} \tag{5}
q=[[θ1][θ2]]T(5)
p ‾ = d i a g ( p 1 p 2 ) = [ [ e 3 0 ] 0 0 [ e 3 1 ] ] = [ [ e 3 0 ] 0 0 A 0 1 [ e 3 1 ] ] (6) \underline{\boldsymbol{p}} = diag \begin{pmatrix} \boldsymbol{p_{1}} & \boldsymbol{p_{2}} \end{pmatrix} = \begin{bmatrix} [\boldsymbol{e^{0}_{3}}] & 0 \\ 0 & [\boldsymbol{e^{1}_{3}} ] \end{bmatrix} = \begin{bmatrix} [\boldsymbol{e^{0}_{3}}] & 0 \\ 0 & \boldsymbol{A}_01[\boldsymbol{e^{1}_{3}} ] \end{bmatrix} \tag{6} p=diag(p1p2)=[[e30]00[e31]]=[[e30]00A01[e31]](6)
其中
θ
1
\theta_{1}
θ1、
θ
2
\theta_{2}
θ2分别对应
B
1
B_{1}
B1绕
B
0
B_{0}
B0转过的角度以及
B
2
B_{2}
B2绕
B
1
B_{1}
B1转过的角度,
e
3
0
=
[
0
0
1
]
(7)
\boldsymbol{e^{0}_{3}} = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \tag{7}
e30=[001](7)
e 3 1 = [ 0 0 1 ] (8) \boldsymbol{e^{1}_{3}} = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \tag{8} e31=[001](8)
刚体
B
1
B_{1}
B1相对于刚体
B
0
B_{0}
B0的角速度
Ω
1
=
p
1
T
θ
1
˙
=
e
3
0
θ
1
˙
=
[
0
0
θ
1
˙
]
T
(9)
\boldsymbol{\Omega_{1}} = \boldsymbol{p_{1}} ^{\mathrm{T}}\dot{\theta_{1}} = \boldsymbol{e^{0}_{3}}\dot{\theta_{1}} = \begin{bmatrix} 0 & 0 & \dot{\theta_{1}} \end{bmatrix}^{\mathrm{T}} \tag{9}
Ω1=p1Tθ1˙=e30θ1˙=[00θ1˙]T(9)
刚体
B
2
B_{2}
B2相对于刚体
B
1
B_{1}
B1的角速度
Ω
2
=
p
2
T
θ
2
˙
=
e
3
1
θ
2
˙
=
[
0
0
θ
2
˙
]
T
(10)
\boldsymbol{\Omega_{2}} = \boldsymbol{p_{2}} ^{\mathrm{T}}\dot{\theta_{2}} = \boldsymbol{e^{1}_{3}}\dot{\theta_{2}} = \begin{bmatrix} 0 & 0 & \dot{\theta_{2}} \end{bmatrix}^{\mathrm{T}} \tag{10}
Ω2=p2Tθ2˙=e31θ2˙=[00θ2˙]T(10)
则有
Ω
=
[
Ω
1
Ω
2
]
T
(11)
\boldsymbol{\Omega} = \begin{bmatrix} \boldsymbol{\Omega_{1}} & \boldsymbol{\Omega_{2}} \end{bmatrix}^{\mathrm{T}} \tag{11}
Ω=[Ω1Ω2]T(11)
对于刚体
B
1
B_{1}
B1相对于刚体
B
0
B_{0}
B0的角加速度
Ω
˙
1
=
p
1
T
θ
1
¨
+
w
1
=
[
0
0
θ
1
¨
]
T
+
[
0
0
∂
p
1
∂
θ
1
θ
1
˙
θ
1
˙
]
T
(12)
\boldsymbol{\dot{\Omega}_{1}} = \boldsymbol{p_{1}} ^{\mathrm{T}}\ddot{\theta_{1}} + \boldsymbol{w_{1}} = \begin{bmatrix} 0 & 0 & \ddot{\theta_{1}} \end{bmatrix}^{\mathrm{T}} + \begin{bmatrix} 0 & 0 & \frac{\partial{\boldsymbol{p_{1}}}}{\partial{\theta_{1}}}\dot{\theta_{1}}\dot{\theta_{1}} \end{bmatrix}^{\mathrm{T}} \tag{12}
Ω˙1=p1Tθ1¨+w1=[00θ1¨]T+[00∂θ1∂p1θ1˙θ1˙]T(12)
对于刚体
B
2
B_{2}
B2相对于刚体
B
1
B_{1}
B1的角加速度
Ω
˙
2
=
p
2
T
θ
2
¨
+
w
2
=
[
0
0
θ
2
¨
]
T
+
[
0
0
∂
p
2
∂
θ
2
θ
2
˙
θ
2
˙
]
T
(13)
\boldsymbol{\dot{\Omega}_{2}} = \boldsymbol{p_{2}} ^{\mathrm{T}}\ddot{\theta_{2}} + \boldsymbol{w_{2}} = \begin{bmatrix} 0 & 0 & \ddot{\theta_{2}} \end{bmatrix}^{\mathrm{T}} + \begin{bmatrix} 0 & 0 & \frac{\partial{\boldsymbol{p_{2}}}}{\partial{\theta_{2}}}\dot{\theta_{2}}\dot{\theta_{2}} \end{bmatrix}^{\mathrm{T}} \tag{13}
Ω˙2=p2Tθ2¨+w2=[00θ2¨]T+[00∂θ2∂p2θ2˙θ2˙]T(13)
则有
Ω ˙ = [ Ω ˙ 1 Ω ˙ 2 ] T (14) \boldsymbol{\dot{\Omega}} = \begin{bmatrix} \boldsymbol{\dot{\Omega}_{1}} & \boldsymbol{\dot{\Omega}_{2}} \end{bmatrix}^{\mathrm{T}} \tag{14} Ω˙=[Ω˙1Ω˙2]T(14)
w ‾ = [ w 1 ‾ w 2 ‾ ] T = 0 ‾ (15) \underline{\boldsymbol{w}} = \begin{bmatrix} \underline{\boldsymbol{w_{1}}} & \underline{\boldsymbol{w_{2}}} \end{bmatrix}^{\mathrm{T}} = \underline{\boldsymbol{0}} \tag{15} w=[w1w2]T=0(15)
其中 w ‾ \underline{\boldsymbol{w}} w是由于转轴相对刚体的运动而产生
写成矩阵的形式有
Ω
‾
=
p
‾
T
q
˙
‾
(16)
\underline{\boldsymbol{\Omega}} = \underline{\boldsymbol{p} }^{\mathrm{T}}\underline{\dot{q}} \tag{16}
Ω=pTq˙(16)
Ω ˙ ‾ = p ‾ T q ¨ ‾ + w ‾ (17) \underline{\boldsymbol{\dot{\Omega}}} = \underline{\boldsymbol{p} }^{\mathrm{T}}\underline{\ddot{q}}+\underline{\boldsymbol{w}} \tag{17} Ω˙=pTq¨+w(17)
2)角速度与角加速度
对于树系统{B}中的刚体,其先对于惯性空间的角速度即为零刚体
B
0
B_{0}
B0的角速度以及沿途各刚体相对角速度之和,所以有
ω
1
=
ω
0
−
∑
i
=
1
2
T
i
1
Ω
i
=
ω
0
+
Ω
1
=
[
0
0
θ
1
˙
]
(18)
\boldsymbol{\omega_{1}} = \boldsymbol{\omega_{0}} - \sum_{i=1}^{2}T_{i1}\boldsymbol{\Omega_{i}} = \boldsymbol{\omega_{0}} + \boldsymbol{\Omega_{1}} = \begin{bmatrix} 0 \\ 0\\ \dot{\theta_{1}} \end{bmatrix} \tag{18}
ω1=ω0−i=1∑2Ti1Ωi=ω0+Ω1=
00θ1˙
(18)
ω 2 = ω 0 − ∑ i = 1 2 T i 2 Ω i = ω 0 + Ω 1 + Ω 2 = [ 0 0 θ 1 ˙ + θ 2 ˙ ] (19) \boldsymbol{\omega_{2}} = \boldsymbol{\omega_{0}} - \sum_{i=1}^{2}T_{i2}\boldsymbol{\Omega_{i}} = \boldsymbol{\omega_{0}} + \boldsymbol{\Omega_{1}} + \boldsymbol{\Omega_{2}} = \begin{bmatrix} 0 \\ 0 \\ \dot{\theta_{1}} + \dot{\theta_{2}} \end{bmatrix} \tag{19} ω2=ω0−i=1∑2Ti2Ωi=ω0+Ω1+Ω2= 00θ1˙+θ2˙ (19)
写成矩阵的形式有
ω ‾ = − T ‾ T Ω ‾ + ω 0 1 ‾ 2 (20) \underline{\boldsymbol{\omega}} = -\underline{T}^\mathrm{T}\underline{\boldsymbol{\Omega}} + \boldsymbol{\omega}_{0}\underline{1}_{2} \tag{20} ω=−TTΩ+ω012(20)
其中$\underline{1}n = \begin{bmatrix} 1_1 & 1_2 & \cdots & 1{n}\end{bmatrix}^{\mathrm{T}} $
由于
Ω
‾
=
p
‾
T
q
˙
‾
(21)
\underline{\boldsymbol{\Omega}} = \underline{\boldsymbol{p} }^{\mathrm{T}}\underline{\dot{q}} \tag{21}
Ω=pTq˙(21)
写成广义坐标的形式有
ω
‾
=
−
T
‾
T
p
‾
T
q
˙
‾
+
ω
0
1
‾
2
=
β
‾
q
˙
‾
+
ω
0
1
‾
2
(22)
\underline{\boldsymbol{\omega}} = -\underline{T}^\mathrm{T}\underline{\boldsymbol{p} }^{\mathrm{T}}\underline{\dot{q}} + \boldsymbol{\omega}_{0}\underline{1}_{2} = \underline{\boldsymbol{\beta}}\underline{\dot{q}} + \boldsymbol{\omega}_{0}\underline{1}_{2} \tag{22}
ω=−TTpTq˙+ω012=βq˙+ω012(22)
其中
β
‾
=
−
(
p
‾
T
‾
)
T
=
[
p
‾
1
0
‾
p
‾
1
p
‾
2
]
=
[
e
3
0
0
‾
e
3
0
e
3
1
]
(23)
\underline{\boldsymbol{\beta}}= -(\underline{\boldsymbol{p}}\underline{\boldsymbol{T}})^{\mathrm{T}} = \begin{bmatrix} \underline{\boldsymbol{p}}_1 & \underline{\boldsymbol{0}}\\ \underline{\boldsymbol{p}}_1 & \underline{\boldsymbol{p}}_2 \end{bmatrix} = \begin{bmatrix} \boldsymbol{e^{0}_{3}} & \underline{\boldsymbol{0}}\\ \boldsymbol{e^{0}_{3}} & \boldsymbol{e^{1}_{3}} \end{bmatrix} \tag{23}
β=−(pT)T=[p1p10p2]=[e30e300e31](23)
对于树形结构的角加速度,对式 20 20 20求导,得
ω ˙ 1 = ω ˙ 0 − ∑ i = 1 2 T i 1 ( Ω ˙ i + ω 1 × Ω i ) = ω ˙ 0 + [ w 1 y θ ˙ 1 − w 1 x θ ˙ 1 θ 1 ¨ + ∂ p 1 ∂ θ 1 θ 1 ˙ θ 1 ˙ ] T = [ ω ˙ 0 x + w 1 y θ ˙ 1 ω ˙ 0 y − w 1 x θ ˙ 1 ω ˙ 0 z + θ 1 ¨ + ∂ p 1 ∂ θ 1 θ 1 ˙ θ 1 ˙ ] = [ 0 0 θ 1 ¨ + ∂ p 1 ∂ θ 1 θ 1 ˙ θ 1 ˙ ] (24) \dot{\boldsymbol{\omega}}_{1} = \dot{\boldsymbol{\omega}}_{0} - \sum_{i=1}^{2}T_{i1}(\boldsymbol{\dot{\Omega}}_{i} + \boldsymbol{\omega}_{1}\times\boldsymbol{\Omega}_{i}) = \\ \dot{\boldsymbol{\omega}}_{0} + \begin{bmatrix} w_{1y}\dot{\theta}_{1} & -w_{1x}\dot{\theta}_{1} & \ddot{\theta_{1}}+\frac{\partial{\boldsymbol{p_{1}}}}{\partial{\theta_{1}}}\dot{\theta_{1}}\dot{\theta_{1}} \end{bmatrix}^{\mathrm{T}} = \\ \begin{bmatrix} \dot{\omega}_{0x} + w_{1y}\dot{\theta}_{1} \\ \dot{\omega}_{0y} - w_{1x}\dot{\theta}_{1} \\ \dot{\omega}_{0z} + \ddot{\theta_{1}}+\frac{\partial{\boldsymbol{p_{1}}}}{\partial{\theta_{1}}}\dot{\theta_{1}}\dot{\theta_{1}} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \ddot{\theta_{1}}+\frac{\partial{\boldsymbol{p_{1}}}}{\partial{\theta_{1}}}\dot{\theta_{1}}\dot{\theta_{1}} \end{bmatrix} \tag{24} ω˙1=ω˙0−i=1∑2Ti1(Ω˙i+ω1×Ωi)=ω˙0+[w1yθ˙1−w1xθ˙1θ1¨+∂θ1∂p1θ1˙θ1˙]T= ω˙0x+w1yθ˙1ω˙0y−w1xθ˙1ω˙0z+θ1¨+∂θ1∂p1θ1˙θ1˙ = 00θ1¨+∂θ1∂p1θ1˙θ1˙ (24)
其中 ω 1 × Ω i \boldsymbol{\omega}_{1}\times\boldsymbol{\Omega}_{i} ω1×Ωi是由于非惯性系相对于惯性系的转动行而产生, ω 0 = [ w 0 x w 0 y w 0 z ] T = [ 0 0 0 ] T \boldsymbol{\omega}_{0} = \begin{bmatrix} w_{0x} & w_{0y} & w_{0z}\end{bmatrix}^{\mathrm{T}} = \begin{bmatrix} 0 & 0 & 0\end{bmatrix}^{\mathrm{T}} ω0=[w0xw0yw0z]T=[000]T, ω ˙ 0 = [ 0 0 0 ] T \boldsymbol{\dot{\omega}}_{0} = \begin{bmatrix} 0 & 0 & 0\end{bmatrix}^{\mathrm{T}} ω˙0=[000]T, ω ¨ 0 = [ 0 0 0 ] T \boldsymbol{\ddot{\omega}}_{0} = \begin{bmatrix} 0 & 0 & 0\end{bmatrix}^{\mathrm{T}} ω¨0=[000]T, ω \boldsymbol{\omega} ω和 Ω \boldsymbol{\Omega} Ω均为惯性系下坐标,注意式 ( 11 ) (11) (11)和式 ( 12 ) (12) (12)中的 Ω \boldsymbol{\Omega} Ω为相对系下的坐标。
ω ˙ 2 = ω ˙ 0 − ∑ i = 1 2 T i 2 ( Ω ˙ i + ω 2 × Ω i ) = ω ˙ 0 + [ w 2 y θ ˙ 1 − w 2 x θ ˙ 1 θ 1 ¨ + ∂ p 1 ∂ θ 1 θ 1 ˙ θ 1 ˙ ] T + [ w 2 y θ ˙ 2 − w 2 x θ ˙ 2 θ 2 ¨ + ∂ p 2 ∂ θ 2 θ 2 ˙ θ 2 ˙ ] T = [ ω ˙ 0 x + w 2 y θ ˙ 1 + w 2 y θ ˙ 2 ω ˙ 0 y − w 2 x θ ˙ 1 − w 2 x θ ˙ 2 ω ˙ 0 z + θ 1 ¨ + ∂ p 1 ∂ θ 1 θ 1 ˙ θ 1 ˙ + θ 2 ¨ + ∂ p 2 ∂ θ 2 θ 2 ˙ θ 2 ˙ ] = [ 0 0 θ 1 ¨ + ∂ p 1 ∂ θ 1 θ 1 ˙ θ 1 ˙ + θ 2 ¨ + ∂ p 2 ∂ θ 2 θ 2 ˙ θ 2 ˙ ] (25) \dot{\boldsymbol{\omega}}_{2} = \dot{\boldsymbol{\omega}}_{0} - \sum_{i=1}^{2}T_{i2}(\boldsymbol{\dot{\Omega}}_{i} + \boldsymbol{\omega}_{2}\times\boldsymbol{\Omega}_{i}) = \\ \dot{\boldsymbol{\omega}}_{0} + \begin{bmatrix} w_{2y}\dot{\theta}_{1} & -w_{2x}\dot{\theta}_{1} & \ddot{\theta_{1}}+ \frac{\partial{\boldsymbol{p_{1}}}}{\partial{\theta_{1}}}\dot{\theta_{1}}\dot{\theta_{1}} \end{bmatrix}^{\mathrm{T}}+ \begin{bmatrix} w_{2y}\dot{\theta}_{2} & -w_{2x}\dot{\theta}_{2} & \ddot{\theta_{2}}+ \frac{\partial{\boldsymbol{p_{2}}}}{\partial{\theta_{2}}}\dot{\theta_{2}}\dot{\theta_{2}} \end{bmatrix}^{\mathrm{T}} = \\ \begin{bmatrix} \dot{\omega}_{0x} + w_{2y}\dot{\theta}_{1} + w_{2y}\dot{\theta}_{2} \\ \dot{\omega}_{0y} - w_{2x}\dot{\theta}_{1} - w_{2x}\dot{\theta}_{2}\\ \dot{\omega}_{0z} + \ddot{\theta_{1}}+\frac{\partial{\boldsymbol{p_{1}}}}{\partial{\theta_{1}}}\dot{\theta_{1}}\dot{\theta_{1}} + \ddot{\theta_{2}}+ \frac{\partial{\boldsymbol{p_{2}}}}{\partial{\theta_{2}}}\dot{\theta_{2}}\dot{\theta_{2}} \end{bmatrix} = \begin{bmatrix} 0 \\ 0\\ \ddot{\theta_{1}}+\frac{\partial{\boldsymbol{p_{1}}}}{\partial{\theta_{1}}}\dot{\theta_{1}}\dot{\theta_{1}} + \ddot{\theta_{2}}+ \frac{\partial{\boldsymbol{p_{2}}}}{\partial{\theta_{2}}}\dot{\theta_{2}}\dot{\theta_{2}} \end{bmatrix} \tag{25} ω˙2=ω˙0−i=1∑2Ti2(Ω˙i+ω2×Ωi)=ω˙0+[w2yθ˙1−w2xθ˙1θ1¨+∂θ1∂p1θ1˙θ1˙]T+[w2yθ˙2−w2xθ˙2θ2¨+∂θ2∂p2θ2˙θ2˙]T= ω˙0x+w2yθ˙1+w2yθ˙2ω˙0y−w2xθ˙1−w2xθ˙2ω˙0z+θ1¨+∂θ1∂p1θ1˙θ1˙+θ2¨+∂θ2∂p2θ2˙θ2˙ = 00θ1¨+∂θ1∂p1θ1˙θ1˙+θ2¨+∂θ2∂p2θ2˙θ2˙ (25)
写成矩阵的形式有
ω
˙
‾
=
−
T
‾
T
(
Ω
˙
‾
+
h
‾
)
+
ω
˙
0
1
‾
2
(26)
\underline{\dot{\boldsymbol{\omega}}} = -\underline{T}^{\mathrm{T}}(\underline{\boldsymbol{\dot{\Omega}}}+\underline{\boldsymbol{h}})+\boldsymbol{\dot{\omega}}_{0}\underline{1}_{2} \tag{26}
ω˙=−TT(Ω˙+h)+ω˙012(26)
其中
h ‾ = [ ω 0 × Ω 1 ω 1 × Ω 2 ] T = [ 0 0 ] T (27) \underline{\boldsymbol{h}} = \begin{bmatrix} \boldsymbol{\omega}_{0} \times \boldsymbol{\Omega}_1 & \boldsymbol{\omega}_{1} \times \boldsymbol{\Omega}_2 \end{bmatrix}^{\mathrm{T}} = \begin{bmatrix} \boldsymbol{0} & \boldsymbol{0} \end{bmatrix}^{\mathrm{T}} \tag{27} h=[ω0×Ω1ω1×Ω2]T=[00]T(27)
由式 ( 16 ) (16) (16)、式 ( 17 ) (17) (17)将式 ( 26 ) (26) (26)写成广义坐标的形式,有
ω ˙ ‾ = β ‾ q ¨ ‾ + σ ‾ (28) \underline{\dot{\boldsymbol{\omega}}} = \underline{\boldsymbol{\beta}}\underline{\ddot{q}} + \underline{\boldsymbol{\sigma}} \tag{28} ω˙=βq¨+σ(28)
其中
σ ‾ = ω ˙ 0 1 ‾ 2 − T ‾ T ( w ‾ + h ‾ ) = 0 (29) \underline{\boldsymbol{\sigma}} = \boldsymbol{\dot{\omega}}_{0}\underline{1}_{2} - \underline{T}^{\mathrm{T}}(\underline{\boldsymbol{w}} + \underline{\boldsymbol{h}}) = \boldsymbol{0} \tag{29} σ=ω˙012−TT(w+h)=0(29)
3) 体铰矢量与通路矢量
为分析刚体质心的速度与加速度,还需要刚体的尺寸、位置等信息。
定义体铰矢量
c
i
j
\boldsymbol{c}_{ij}
cij如下图所示,
c
i
j
\boldsymbol{c}_{ij}
cij为刚体
B
i
\boldsymbol{B}_{i}
Bi质心
O
c
i
O_{ci}
Oci指向与其相连的铰
O
j
O_{j}
Oj的矢量。
由于不相连的两个体、铰间的体铰矢量并不会在运动学和动力学方程中体现出来,因此利用 S ‾ \underline{\boldsymbol{S}} S确定需要的体较矢量,其余置零,得到加权体铰矢量 C i j \boldsymbol{C}_{ij} Cij
C i j = S i j c i j (29) \boldsymbol{C}_{ij} = S_{ij}\boldsymbol{c}_{ij} \tag{29} Cij=Sijcij(29)
称
C
‾
\underline{\boldsymbol{C}}
C为体铰矢量矩阵,其描述系统内各刚体上铰的分布状况。
定义通路矢量如下图所示,
b
i
j
\boldsymbol{b}_{ij}
bij表示刚体
B
i
\boldsymbol{B}_{i}
Bi内接铰到连接
B
j
\boldsymbol{B}_{j}
Bj的铰的距离。
可利用
T
‾
\underline{T}
T求得
d ‾ = − C ‾ T ‾ (30) \underline{\boldsymbol{d}} = -\underline{\boldsymbol{C}}\underline{T} \tag{30} d=−CT(30)
通过定义可以得到此题的 C ‾ \underline{\boldsymbol{C}} C和 d ‾ \underline{\boldsymbol{d}} d(会不断变化)。
C ‾ = [ − c 11 c 12 0 − c 22 ] (31) \underline{\boldsymbol{C}} = \begin{bmatrix} -\boldsymbol{c}_{11} & \boldsymbol{c}_{12}\\ 0 & -\boldsymbol{c}_{22} \end{bmatrix} \tag{31} C=[−c110c12−c22](31)
d ‾ = [ − c 11 − c 11 + c 12 0 − c 22 ] (32) \underline{\boldsymbol{d}} = \begin{bmatrix} -\boldsymbol{c}_{11} & -\boldsymbol{c}_{11}+\boldsymbol{c}_{12}\\ 0 & -\boldsymbol{c}_{22} \end{bmatrix} \tag{32} d=[−c110−c11+c12−c22](32)
其中
c 11 = A 10 [ − ρ 1 0 0 ] T \boldsymbol{c}_{11} = \boldsymbol{A}_{10} \begin{bmatrix} -\rho_{1} & 0 & 0 \end{bmatrix}^{\mathrm{T}} c11=A10[−ρ100]T
c 12 = A 10 [ l − ρ 1 0 0 ] T \boldsymbol{c}_{12} = \boldsymbol{A}_{10} \begin{bmatrix} l-\rho_{1} & 0 & 0 \end{bmatrix}^{\mathrm{T}} c12=A10[l−ρ100]T
c 22 = A 20 [ − ρ 2 0 0 ] T \boldsymbol{c}_{22} = \boldsymbol{A}_{20} \begin{bmatrix} -\rho_{2} & 0 & 0 \end{bmatrix}^{\mathrm{T}} c22=A20[−ρ200]T
其中 A i j \boldsymbol{A}_{ij} Aij为 ( O j , e j ‾ ) (O_{j},\underline{\boldsymbol{e^{j}}}) (Oj,ej)系转到 ( O i , e i ‾ ) (O_{i},\underline{\boldsymbol{e^{i}}}) (Oi,ei)系的坐标转移矩阵,其中
A 01 = [ C θ 1 S θ 1 0 − S θ 1 C θ 1 0 0 0 1 ] \boldsymbol{A}_{01} = \begin{bmatrix} C\theta_{1} & S\theta_{1} & 0\\ -S\theta_{1} & C\theta_{1} & 0\\ 0 & 0 & 1 \end{bmatrix} A01= Cθ1−Sθ10Sθ1Cθ10001
A 12 = [ C θ 2 S θ 2 0 − S θ 2 C θ 2 0 0 0 1 ] \boldsymbol{A}_{12} = \begin{bmatrix} C\theta_{2} & S\theta_{2} & 0\\ -S\theta_{2} & C\theta_{2} & 0\\ 0 & 0 & 1 \end{bmatrix} A12= Cθ2−Sθ20Sθ2Cθ20001
A 02 = A 01 A 12 = [ C ( θ 1 + θ 2 ) S ( θ 1 + θ 2 ) 0 − S ( θ 1 + θ 2 ) C ( θ 1 + θ 2 ) 0 0 0 1 ] \boldsymbol{A}_{02} = \boldsymbol{A}_{01} \boldsymbol{A}_{12} = \begin{bmatrix} C(\theta_{1}+\theta_{2}) & S(\theta_{1}+\theta_{2}) & 0\\ -S(\theta_{1}+\theta_{2}) & C(\theta_{1}+\theta_{2}) & 0\\ 0 & 0 & 1 \end{bmatrix} A02=A01A12= C(θ1+θ2)−S(θ1+θ2)0S(θ1+θ2)C(θ1+θ2)0001
A 10 = A 01 T = [ C θ 1 − S θ 1 0 S θ 1 C θ 1 0 0 0 1 ] \boldsymbol{A}_{10} = \boldsymbol{A}_{01}^{\mathrm{T}} = \begin{bmatrix} C\theta_{1} & -S\theta_{1} & 0\\ S\theta_{1} & C\theta_{1} & 0\\ 0 & 0 & 1 \end{bmatrix} A10=A01T= Cθ1Sθ10−Sθ1Cθ10001
A 21 = A 12 T = [ C θ 2 − S θ 2 0 S θ 2 C θ 2 0 0 0 1 ] \boldsymbol{A}_{21} = \boldsymbol{A}_{12}^{\mathrm{T}} = \begin{bmatrix} C\theta_{2} & -S\theta_{2} & 0\\ S\theta_{2} & C\theta_{2} & 0\\ 0 & 0 & 1 \end{bmatrix} A21=A12T= Cθ2Sθ20−Sθ2Cθ20001
A 20 = A 02 T = [ C ( θ 1 + θ 2 ) − S ( θ 1 + θ 2 ) 0 S ( θ 1 + θ 2 ) C ( θ 1 + θ 2 ) 0 0 0 1 ] \boldsymbol{A}_{20} = \boldsymbol{A}_{02}^{\mathrm{T}} = \begin{bmatrix} C(\theta_{1}+\theta_{2}) & -S(\theta_{1}+\theta_{2}) & 0\\ S(\theta_{1}+\theta_{2}) & C(\theta_{1}+\theta_{2}) & 0\\ 0 & 0 & 1 \end{bmatrix} A20=A02T= C(θ1+θ2)S(θ1+θ2)0−S(θ1+θ2)C(θ1+θ2)0001
所以
c 11 = [ − C θ 1 ρ 1 − S θ 1 ρ 1 0 ] T \boldsymbol{c}_{11} = \begin{bmatrix} -C\theta_{1}\rho_{1} & -S\theta_{1}\rho_{1} & 0 \end{bmatrix}^{\mathrm{T}} c11=[−Cθ1ρ1−Sθ1ρ10]T
c 12 = [ C θ 1 ( l − ρ 1 ) S θ 1 ( l − ρ 1 ) 0 ] T \boldsymbol{c}_{12} = \begin{bmatrix} C\theta_{1}(l-\rho_{1})& S\theta_{1}(l-\rho_{1}) & 0 \end{bmatrix}^{\mathrm{T}} c12=[Cθ1(l−ρ1)Sθ1(l−ρ1)0]T
c 22 = [ − C ( θ 1 + θ 2 ) ρ 2 − S ( θ 1 + θ 2 ) ρ 2 0 ] T \boldsymbol{c}_{22} = \begin{bmatrix} -C(\theta_{1}+\theta_{2}) \rho_{2} & -S(\theta_{1}+\theta_{2}) \rho_{2} & 0 \end{bmatrix}^{\mathrm{T}} c22=[−C(θ1+θ2)ρ2−S(θ1+θ2)ρ20]T
d 11 = [ C θ 1 ρ 1 S θ 1 ρ 1 0 ] T \boldsymbol{d}_{11} = \begin{bmatrix} C\theta_{1}\rho_{1} & S\theta_{1}\rho_{1} & 0 \end{bmatrix}^{\mathrm{T}} d11=[Cθ1ρ1Sθ1ρ10]T
d 12 = [ C θ 1 l S θ 1 l 0 ] T \boldsymbol{d}_{12} = \begin{bmatrix} C\theta_{1}l & S\theta_{1}l & 0 \end{bmatrix}^{\mathrm{T}} d12=[Cθ1lSθ1l0]T
d 22 = [ C ( θ 1 + θ 2 ) ρ 2 S ( θ 1 + θ 2 ) ρ 2 0 ] T \boldsymbol{d}_{22} = \begin{bmatrix} C(\theta_{1}+\theta_{2}) \rho_{2} & S(\theta_{1}+\theta_{2}) \rho_{2} & 0 \end{bmatrix}^{\mathrm{T}} d22=[C(θ1+θ2)ρ2S(θ1+θ2)ρ20]T