词语相似度计算:4、提取文本tf、tfidf特征

本文介绍如何利用sklearn库进行文本处理,详细阐述了如何提取文本的TF和TF-IDF特征,以用于词语相似度计算。
摘要由CSDN通过智能技术生成



还是sklearn,不多做解释:

from sklearn.feature_extraction.text import CountVectorizer, TfidfTransformer


#!usr/bin/env python
# -*- coding:utf-8 -*-



import pandas as pd
import numpy as np
from sklearn.feature_extraction.text import CountVectorizer, TfidfTransformer

import sys
reload(sys)
sys.setdefaultencoding("utf8")
#for UnicodeEncodeError


#get all file names in the "ParentFolder"
def GetFilesInFolder(ParentFolder):
    import os
    filenameList = []
    for filename in os.listdir(ParentFolder):
        print filename
        filenameList.append(filename)
    return filenameList

ParentFolder="wikiData"
filenameList=GetFilesInFolder(ParentFolder)
dataList=[]
for fileName in filenameList:
    f=open(ParentFolder+"/"+fileName,"r")
    f
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值