浅谈对dijkstra的理解

关于dijkstra,每日一水2

题目描述

本期借鉴成熟模板来说一下对于最短路算法之一的dijkstra及其优化的理解(注:本篇采用矩阵,邻接链表书写)


算法1

(朴素dij)

******对于稠密图来说显然是朴素dij更好求解,因为朴素dij是基于贪心书写,将根节点的距离设为1,其他节点设为无穷。
同时通过循环n次,每一次将集合S之外距离最短X的点加入到S中去(这里的距离最短指的是距离1号点最近。
点X的路径一定最短。然后用点X更新X邻接点的距离。里面的dist数组存的是该点到根节点的距离


这里重点解释一下更新距离,先便利一遍找到距离根节点最近的点然后以该点为中心便利其他的点,因为该点到根节点的距离是他所有到根节点的路的最短距离的一条,所以用这条路组成的最短路很更小,所以用该点的距离不断更新其他可以走该点到根节点的最短路的点到根节点的距离。


时间复杂度

时间复杂度分析
寻找路径最短的点:O(n2)
加入集合S:O(n)
更新距离:O(m)
所以总的时间复杂度为O(n2)

C++ 代码
#include<iostream> 
#include<cstring>
#include<cstdio>
#include<algorithm>//直接用万能头就行
using namespace std;

const int N = 510, M = 100010;

int g[N][N], dist[N];//存放边和距离
bool st[N];//判断是否访问过该点

int n, m;

int dijkstra()
{
    memset(dist, 0x3f, sizeof(dist));
    dist[1] = 0;//1节点的距离为0,其他都是无穷,这样方便更新
    for(int i = 1; i <= n; i++)//对所有的顶点
    {
        int t = -1;      //将t设置为-1 因为Dijkstra算法适用于不存在负权边的图
        for(int j=1;j<=n;j++)
        {
            if(!st[j]&&(t==-1||dist[t]>dist[j])    //该步骤即寻找还未确定最短路的点中路径最短的点,如果t为-1的话表示还没有遇到其他点,这时会更新为遇到的第一个点的距离,以此来开始贪心
                t=j;
        }
        st[t] = true;
        for(int j = 1; j <= n; j++)
            dist[j] = min(dist[j], dist[t] + g[t][j]);//更新其他未确定的点
            //这里可能有同学要问j如果从1开始的话 会不会影响之前已经确定的点的最小距离
//但其实是不会 根据上面的循环我们可以贪心出一个距离最小的点,以此点开始继而更新该点到其他点的距离,所以不会影响已经确定的点的距离
    }
    if(dist[n] == 0x3f3f3f3f) return -1;//如果到最后一个点的距离为正无穷说明无解
    return dist[n];//
}

int main()
{
    scanf("%d%d", &n, &m);

    memset(g, 0x3f, sizeof(g));//初始化边
    while (m--)
    {
        int x, y, c;
        scanf("%d%d%d", &x, &y, &c);
        g[x][y] = min(g[x][y], c);//存放最小的权值,如果该点本身的权值比后面的小,就不需要用后面输入的权值(最短路)
    }
    cout << dijkstra() << endl;
    return 0;
}


算法2

(堆优化dij)

更适合稀疏图
堆优化版的dijkstra是对朴素版dijkstra进行了优化,在朴素版dijkstra中时间复杂度最高的寻找距离
最短的点O(n^2)可以使用最小堆优化。

  1. 一号点的距离初始化为零,其他点初始化成无穷大。
  2. 将一号点放入堆中。
  3. 不断循环,直到堆空。每一次循环中执行的操作为:
    弹出堆顶(与朴素版diijkstra找到S外距离最短的点相同,并标记该点的最短路径已经确定)。
    用该点更新临界点的距离,若更新成功就加入到堆中。
时间复杂度

寻找路径最短的点:O(n)
加入集合S:O(n)
更新距离:O(mlogn)

参考文献
C++ 代码
#include<iostream>
#include<cstring>
#include<queue>

using namespace std;

typedef pair<int, int> PII;

const int N = 150010; // 把N改为150010就能ac

// 稀疏图用邻接表来存
int h[N], e[N], ne[N], idx;
int w[N]; // 用来存权重
int dist[N];
bool st[N]; // 如果为true说明这个点的最短路径已经确定

int n, m;

void add(int x, int y, int c)
{
    // 有重边也不要紧,假设1->2有权重为2和3的边,再遍历到点1的时候2号点的距离会更新两次放入堆中
    // 这样堆中会有很多冗余的点,但是在弹出的时候还是会弹出最小值2+x(x为之前确定的最短路径),
    // 并标记st为true,所以下一次弹出3+x会continue不会向下执行。
    w[idx] = c;
    e[idx] = y;
    ne[idx] = h[x]; 
    h[x] = idx++;
}

int dijkstra()
{
    memset(dist, 0x3f, sizeof(dist));
    dist[1] = 0;
    priority_queue<PII, vector<PII>, greater<PII>> heap; // 定义一个小根堆
    // 这里heap中为什么要存pair呢,首先小根堆是根据距离来排的,所以有一个变量要是距离,
    // 其次在从堆中拿出来的时候要知道知道这个点是哪个点,不然怎么更新邻接点呢?所以第二个变量要存点。简而言之就是根节点到第二个变量也就是点u的距离(第一个变量)
    heap.push({ 0, 1 }); // 这个顺序不能倒,pair排序时是先根据first,再根据second,
                         // 这里显然要根据距离排序
    while(heap.size())
    {
        PII k = heap.top(); // 取不在集合S中距离最短的点
        heap.pop();
        int ver = k.second, distance = k.first;

        if(st[ver]) continue;
        st[ver] = true;

        for(int i = h[ver]; i != -1; i = ne[i])
        {
            int j = e[i]; // i只是个下标,e中在存的是i这个下标对应的点,也就是ver这个点能到达的点。
            if(dist[j] > distance + w[i])
            {
                dist[j] = distance + w[i];//与朴素版思路一致
                heap.push({ dist[j], j });
            }
        }
    }
    if(dist[n] == 0x3f3f3f3f) return -1;
    else return dist[n];
}

int main()
{
    memset(h, -1, sizeof(h));
    scanf("%d%d", &n, &m);

    while (m--)
    {
        int x, y, c;
        scanf("%d%d%d", &x, &y, &c);
        add(x, y, c);
    }

    cout << dijkstra() << endl;

    return 0;
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值