根植于统计力学的随机方法

1 引言

统计力学的主题围绕对大系统宏观平衡态性质的形式化研究,而系统的每个基本元素遵循力学的微观定律。统计力学的主要目标是从微观元素推导出宏观物体的热力学性质。

系统越有序或者它的概率分布越集中,则熵越小。

2 统计力学

考虑具有许多自由度的物理系统,它可以驻留在大量可能状态中的任何一个。例如,用 p i p_i pi表示一个随机系统中状态 i i i发生的概率:
(式1) p i ≥ 0 , 对 于 所 有 i p_i \geq0,对于所有i \tag{式1} pi0i(1)

(式2) ∑ i p i = 1 \sum _i p_i = 1 \tag{式2} ipi=1(2)
E i E_i Ei表示系统在状态 i i i时的能量,统计热力学基本结论告诉我们,当系统和它周围的环境处于热平衡时,一个基本的结果是状态 i i i发生的概率如下:
(式3) p i = 1 Z e x p ( − E i k B T ) p_i = \frac{1}{Z} exp(-\frac{E_i}{k_B T}) \tag{式3} pi=Z1exp(kBTEi)(3)
其中 T T T为开尔文绝对温度, k B k_B kB为Boltzmann常数,Z为与状态无关的常数,将式2的定义代入式3中得到
(式4) Z = ∑ i e x p ( − E i k B T ) Z = \sum _i exp(-\frac{E_i}{k_B T}) \tag{式4} Z=iexp(kBTEi)(4)
规范化量Z称为状态或者剖分函数。式3的概率分布称为典型分布或者Gibbs分布;指数因子( − E i / k B T -E_i/k_B T Ei/kBT)称为Boltzmann因子。
对于Gibbs分布:
(1)能量低的状态比能量高的状态发生的概率高;
(2)随着温度T降低,概率集中在低能状态的一个更小的子集上。
温度T可以视为一种伪温度,它控制神经元"突触噪声"的热波动。将常数 K B K_B KB为单位1而重新度量之,因此可以重新定义概率 p i p_i pi和剖分函数Z如下:
(式5) p i = 1 Z e x p ( − E i T ) p_i = \frac{1}{Z} exp(- \frac{E_i}{T} ) \tag{式5} pi=Z1exp(TEi)(5)

(式6) Z = ∑ e x p ( − E i T ) Z = \sum exp(- \frac{E_i}{T}) \tag{式6} Z=exp(TEi)(6)
T可以简单称为系统温度,
自由能量和熵
物理系统的Helmholtz自由能量记为F,由剖分函数定义如下:
(式7) F = − T log ⁡ Z F = - T\log Z \tag{式7} F=TlogZ(7)
系统的平均能量定义为:
(式8) &lt; E &gt; = ∑ i p i E i &lt;E&gt; = \sum_i p_i E_i \tag{式8} <E>=ipiEi(8)
&lt; . &gt; &lt;.&gt; <.>表示总体平均运算,可以看出平均能量和自由能量之差为:
(式9) &lt; E &gt; − F = − T ∑ i p i log ⁡ p i &lt;E&gt; - F=-T \sum_i p_i \log p_i \tag{式9} <E>F=Tipilogpi(9)
式子右边忽略温度T,称为系统的熵,表示为:
(式10) H = − ∑ i p i log ⁡ p i H = - \sum_i p_i \log p_i \tag{式10} H=ipilogpi(10)
因此式9可以重写为
&lt; E &gt; − F = T H &lt;E&gt; -F = TH <E>F=TH
或等价于
(式11) F = &lt; E &gt; − T H F = &lt;E&gt; - TH \tag{式11} F=<E>TH(11)
若两个系统 A A A A ′ A &#x27; A彼此热接触,假设系统 A A A比系统 A ′ A&#x27; A更小,这样 A ′ A&#x27; A可以看作具有恒温T的热存储器,两个系统的总熵趋于依照关系式:
Δ H + Δ H ′ ≥ 0 \Delta H + \Delta H&#x27;\geq 0 ΔH+ΔH0
指系统 F F F的自由能量逐渐降低至平衡态时变为最小。即为最小自由能量原则:
随机系统变元的自由能量的最小值在热平衡时达到,此时系统服从Gibbs分布,自然偏爱具有最小自由能量的物理系统。

3 马尔可夫链

考虑由多个随机变量组成的系统,其演化可由一个随机过程描述,随机变量 X n X_n Xn在时刻n取值 x n x_n xn称为系统在n时刻的状态。随机变量所有可能的值构成的空间称为系统的状态空间。如果随机过程 { X n , n = 1 , 2 , . . . } \lbrace X_n,n =1,2,... \rbrace {Xn,n=1,2,...}的构造使得 X n + 1 X_{n+1} Xn+1的条件概率分布仅依靠于 X n X_n Xn的值而与其他以前的值无关,称这个过程为马尔可夫链。更准确地说,我们有
(式12) P ( X n + 1 = x n + 1 ∣ X n = x n , . . . , X 1 = x 1 ) = P ( X n + 1 ∣ X n = x n ) P(X_{n+1} = x_{n+1}|X_n = x_n,...,X_1 = x_1)= P(X_{n+1}|X_n = x_n) \tag{式12} PXn+1=xn+1Xn=xn,...,X1=x1=PXn+1Xn=xn(12)
这称之为马尔可夫特性。换句话说:
如果系统在 n + 1 n+1 n+1时刻出现状态 x n + 1 x_{n+1} xn+1的概率仅依赖于系统在n时刻出现状态 x n x_n xn的概率,则随机变量序列 X 1 , X 2 , X 3 . . . , X n , X n + 1 X_1,X_2,X_3...,X_n,X_{n+1} X1,X2,X3...,Xn,Xn+1称为马尔可夫链。
转移概率
在马尔可夫链中,从一个状态到另一个状态的转移是随机的,但输出符合却是确定的。令
(式13) p i j = P ( X n + 1 = j ∣ X n = i ) p_{ij} = P(X_{n+1} = j|X_n = i) \tag{式13} pij=PXn+1=jXn=i(13)
表示在n时刻状态 i i i转移到 n + 1 n+1 n+1时刻状态j的转移概率。既然 p i j p_{ij} pij为条件概率,所有的转移概率必须满足两个条件:
(式14) p i j ≥ 0 , 对 于 所 有 的 i , j p_{ij} \geq 0, 对于所有的i,j \tag{式14} pij0,ij(14)
(式15) ∑ j p i j = 1 , 对 于 所 有 的 i \sum_j p_{ij } = 1,对于所有的i \tag{式15} jpij=1i(15)
将假定转移是固定的,不随时间改变,即式13所有时间n成立,在这种情况下,马尔可夫链称为关于时间是齐次的。
若系统具有有限数目的可能状态,例如K个状态,则转移概率构成一个 K X K K X K KXK的矩阵
(式16) P = ∣ p 11 p 12 . . . p 1 k p 21 p 22 . . . p 2 k . . . . p k 1 p k 2 . . . p k k ∣ P = \begin{vmatrix} p_{11} &amp;p_{12} &amp; ... &amp;&amp;p_{1k} \\p_{21} &amp;p_{22} &amp; ... &amp;&amp;p_{2k} \\ &amp;....\\\\ p_{k1} &amp;p_{k2} &amp; ... &amp;&amp;p_{kk} \\ \end{vmatrix} \tag{式16} P=p11p21pk1p12p22....pk2.........p1kp2kpkk(16)
它的元素满足式14和式15所述的条件。而后一条件就是P的每行的和为1.这种类型的矩阵称为随机矩阵。任何随机矩阵可以作为转移概率矩阵。
p i j ( m ) p_{ij}^{(m)} pij(m)表示从状态 i i i到状态 j j j的m步转移概率:
(式17) p i j ( m ) = P ( X n + m = x j ∣ X n = x i ) , m = 1 , 2 , . . . p_{ij}^{(m)} = P(X_{n+m} = x_j|X_n = x_i),m=1,2,... \tag{式17} pij(m)=P(Xn+m=xjXn=xi)m=1,2,...(17)
(式18) p i j ( m + 1 ) = ∑ k p i k ( m ) p k j , m = 1 , 2 , . . . p_{ij}^{(m+1)} = \sum_k p_{ik}^{(m)}p_{kj},m =1,2,... \tag{式18} pij(m+1)=kpik(m)pkjm=1,2,...(18)
(式19) p i j ( m + m ) = ∑ k p i k ( m ) p k j ( n ) , m = 1 , 2 , . . . p_{ij}^{(m+m)} = \sum_k p_{ik}^{(m)}p_{kj}^{(n)},m =1,2,... \tag{式19} pij(m+m)=kpik(m)pkj(n)m=1,2,...(19)

马尔可夫链的详细说明

(1) 一个由如下项目定义的随机模型:
有限K可能状态,表示为S={1,2,…K}。
一些列相应的概率{ p i j p_{ij} pij},其中 p i j p_{ij} pij为从状态 i i i j j j的状态转移概率,并且满足
p i j ≥ 0 p_{ij} \geq 0 pij0
∑ j p i j = 1 , 对 于 所 有 的 i \sum_j p_{ij } = 1,对于所有的i jpij=1i
(2) 给定已描述的随机模型,马尔可夫链是由下列一系列的随机变量 X 0 , X 1 , X 2 , . . . . X_0,X_1,X_2,.... X0,X1,X2,....所给定,其中他们的值根据相应的马尔可夫特征取值于状态S:
P ( X n + 1 = j ∣ X n = i , X n − 1 , . . . . , X 0 = i 0 ) = P ( X n + 1 = j ∣ X n = i ) P(X_{n+1} = j|X_n=i,X_{n-1},....,X_0=i_0) =P(X_{n+1} = j|X_n = i) P(Xn+1=jXn=i,Xn1,....,X0=i0)=P(Xn+1=jXn=i)

常返性

假设一个马尔可夫链从状态 i i i开始,它以概率1返回状态i,则称状态i为常返的,也就是说
p i = P ( 状 态 i 的 每 一 个 返 回 ) = 1 p_i = P(状态i的每一个返回)=1 pi=P(i=1
若状态 p i &lt; 1 p_i&lt;1 pi<1,则称状态 i i i为瞬态。
如果马尔可夫链从一常态开始,则该状态在时间上将无穷次重现,如果从一瞬态开始,它将只能有限次重现

周期性

在这里插入图片描述
上图显示一个具有常返态的马尔可夫链,此链经过一系列子态,经过三倍次移动后以相同子态结束。图示说明这个常返的马尔可夫链具有周期性。

不可约马尔可夫链

遍历马尔可夫链

4 Metroplis算法

5 模拟退火

6 Gibbs抽样

7 Boltzmann机

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值