对人工智能产品发展的几点认识
说起人工智能的时候,大家都在说是机器具有了人的思维,可以进行情感表达,决策判断。 并且通过越多的数据和越长的训练,智能性会越来越高。那么这种智能怎么来评价其可用性,包括怎么训练,怎么集成,怎么选择呢?
人工智能的基础
在这个点上,我们谈一下要做到人工智能需要的几个必备条件。
海量数据
“海量”数据究竟是多少,其实对于不同的学习目标标准是不一样的。训练一个具有智能和学习能力的算法,或许不需要海量,但是足量是必须的。只有在大量有效的,多样的,具有普遍性的数据训练下,才能使得学习算法的各个参数更加符合“智能”的要求。
大型计算平台
机器学习算法大部分情况下需要通过分布式计算方式进行训练,在应用的过程中实现近乎实时的反馈和识别。而这种高并发,大数据的算法执行依赖于一个稳定的,并且代码优化程度极高的计算平台,平台的容错性,计算效率,以及数据存储能力都是非常重要的点。
牛逼的算法团队
算法团队是人工智能的初期大脑,他们设计了一个智能的最初训练方式,整体学习模式,在智能训练的过程中关注着算法的偏差并且不断进行错误纠正。不断使用新的数据和参数以及维度去使得智能更加自然和符合常