小白也能学会的机器学习|环境准备篇

机器学习入门环境准备篇:从零搭建你的学习基地

        在人工智能浪潮席卷全球的当下,机器学习已成为无数科技爱好者探索的热门领域。然而,在开始这段充满挑战与惊喜的学习之旅前,搭建一个合适的学习环境是至关重要的第一步。接下来,就让我们一起从零开始,完成机器学习入门的环境准备工作。

一、硬件准备​

  1. 处理器:处理器是电脑的核心,它的性能对机器学习训练的速度影响巨大。对于初学者来说,Intel Core i5 及以上或 AMD Ryzen 5 及以上的处理器是比较好的选择。这些处理器拥有多核心和高主频,能够同时处理多个计算任务,加速模型训练过程。如果你计划进行大规模数据处理或复杂模型训练,那么更强大的 Intel Core i7、i9 或 AMD Ryzen 7、9 系列处理器会是更好的选择。​
  2. 内存:机器学习过程中,数据加载、模型训练都需要消耗大量内存。建议至少 8GB 内存起步,若条件允许,16GB 甚至 32GB 内存会让你的学习过程更加流畅,避免因内存不足导致程序卡顿甚至崩溃。当处理大型数据集或运行复杂神经网络模型时,大内存的优势将更加明显。​
  3. 存储:选择固态硬盘(SSD)作为主要存储设备,相比传统机械硬盘,SSD 读写速度更快,能大幅缩短数据读取和模型保存的时间。机器学习项目通常会产生大量数据和模型文件,因此建议选择 256GB 以上容量的 SSD。如果预算充足,512GB 或 1TB 的 SSD 会为你提供更充裕的存储空间。​
  4. 显卡(GPU):对于深度学习领域的机器学习,GPU 是提升训练速度的关键硬件。NVIDIA 的显卡在机器学习领域应用广泛,例如 GeForce GTX 1660 Super、RTX 20 系列、RTX 30 系列等。这些显卡拥有强大的并行计算能力,能够同时处理大量数据,使深度学习模型的训练速度提升数倍甚至数十倍。如果你的预算有限,也可以先使用 CPU 进行学习,后期再根据需求添加 GPU。

二、软件准备​

  1. 操作系统:Windows、Linux 和 macOS 都可以用于机器学习开发。Windows 系统操作界面友好,软件兼容性强,适合初学者快速上手;Linux 系统开源且性能稳定,拥有丰富的机器学习工具和库,在专业科研和工业场景中应用广泛;macOS 系统简洁美观,在数据科学和机器学习领域也有良好的支持,且自带 UNIX 基础,方便进行命令行操作。你可以根据自己的使用习惯和需求选择合适的操作系统。​
  2. Python 安装:Python 是机器学习领域最常用的编程语言,其拥有丰富的库和框架,如 NumPy、Pandas、Scikit-learn、TensorFlow、PyTorch 等,能够帮助我们快速实现各种机器学习算法。前往 Python 官方网站(Welcome to Python.org)下载最新版本的 Python 安装包,安装时记得勾选 “Add Python to PATH” 选项,这样可以在命令行中直接使用 Python 命令。安装完成后,打开命令提示符或终端,输入 “python --version”,若显示 Python 的版本信息,则说明安装成功。​
  3. 包管理工具:Python 的包管理工具可以帮助我们方便地安装、升级和卸载各种库和框架。常用的包管理工具有 pip 和 Anaconda。​
  • pip:它是 Python 官方的包管理工具,安装 Python 时会自动安装。使用 pip 安装库非常简单,例如安装 NumPy 库,只需在命令行中输入 “pip install numpy” 即可。​
  • Anaconda:Anaconda 是一个用于科学计算的 Python 发行版,包含了 Python 和许多常用的科学计算库。它还提供了一个名为 conda 的包管理工具,能够更方便地创建和管理虚拟环境。在 Anaconda 官方网站(Download Anaconda Distribution | Anaconda)下载适合你操作系统的安装包,安装完成后,打开 Anaconda Prompt(Windows 系统)或终端(Linux 和 macOS 系统),可以使用 conda 命令进行包管理和环境创建。

个人建议直接安装Anaconda即可,因为是自带Python的,官网下载速度比较慢,推荐到清华镜像源下载最新版本Index of /anaconda/archive/ | 清华大学开源软件镜像站 | Tsinghua Open Source Mirror 

我选择的是这个

三、开发环境搭建​

  1. 集成开发环境(IDE):IDE 为我们提供了代码编辑、调试、运行等一站式的开发体验。常见的机器学习 IDE 有 PyCharm、Jupyter Notebook 和 Visual Studio Code。​
  • Jupyter Notebook:Jupyter Notebook 是一个基于网页的交互式计算环境,它允许我们将代码、文本、图像、公式等组合在一个文档中,非常适合数据探索、可视化和教学。如果你安装了 Anaconda,Jupyter Notebook 会自动安装。在命令行中输入 “jupyter notebook”,浏览器会自动打开 Jupyter Notebook 的界面,你可以在其中创建新的 Notebook 文件,编写和运行 Python 代码。​
  • Visual Studio Code:Visual Studio Code 是一款轻量级的跨平台代码编辑器,通过安装各种插件,它可以支持 Python 开发以及机器学习相关的功能。在 Visual Studio Code 官方网站(Visual Studio Code - Code Editing. Redefined)下载并安装软件,安装完成后,打开软件,在扩展商店中搜索并安装 “Python” 插件,即可开始进行 Python 和机器学习的开发。​

    2.虚拟环境创建:虚拟环境可以为每个机器学习项目创建独立的运行环境,避免不同项目之间的依赖冲突。使用 Anaconda 创建虚拟环境非常方便,在 Anaconda Prompt 或终端中输入以下命令: 按照自己的需要来创建环境

# 创建一个名为myenv的虚拟环境,指定Python版本
conda create --name myenv python=3.8
# 激活虚拟环境(Windows系统)
activate myenv
# 激活虚拟环境(Linux和macOS系统)
source activate myenv

激活虚拟环境后,你可以在其中安装项目所需的各种库和框架,当项目结束后,可以使用 “conda deactivate” 命令退出虚拟环境。​

完成以上硬件、软件和开发环境的准备工作后,你就拥有了一个适合机器学习入门学习的基础环境。接下来,就可以开始探索机器学习的奇妙世界,学习各种算法和模型,通过实践不断提升自己的技能。在学习过程中,可能会遇到各种问题和挑战,但不要害怕,多查阅资料、向社区请教,相信你一定能够在机器学习领域取得进步!​

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值