损失函数的盘点与总结

31 篇文章 3 订阅
8 篇文章 0 订阅
文章探讨了L1、L2以及SmoothL1三种损失函数的性质。L1损失函数在数据异常时较稳定,但可能在后期无法收敛;L2损失函数对离群点敏感,可能导致训练不稳;SmoothL1则是两者的折衷,结合了L1的稳定性与L2的平滑性。
摘要由CSDN通过智能技术生成

文章目录

公式

L1
在这里插入图片描述
L2
在这里插入图片描述

L1

令 x = fx - y
有Lx = |x|
求导数:
在这里插入图片描述

我们知道梯度更新方法为:

在这里插入图片描述
这样会有一个问题就是 为0 的时候不可导,另外当梯度很小时,很难收敛到极小值

优点: 前期收敛快,梯度不变,不容易收脏数据的影响,
缺点: 后期无法收敛,只能调学习率的方式,更新太快可能无法取到极小值

L2

在这里插入图片描述
,忽略求和及系数,则有L1(x)=x^2,其导数为

在这里插入图片描述

所以, l2 中, 预测和真实值的差值越大, 损失越大。

优点: 差值越大, 导数越大,反之, 容易收敛到极小值
缺点: 容易受到离群点,脏数据的影响,一开始梯度太大,容易出现训练不稳定, 梯度爆炸

在这里插入图片描述

Smooth l1

这是一个分段函数

在这里插入图片描述
是l2 和l1 的结合体, 在梯度较小时,采用l2 较为平滑的方式, 较大时采用稳定的梯度下降。

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

东哥爱编程

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值