算法学习四:算法性能分析理论基础——函数增长与渐进分析

算法学习四:算法性能分析理论基础——函数增长与渐进分析

在算法性能分析过程中,特别是在算法运行效率分析中,我们经常使用渐渐分析法,它使我们在分析算法性能时不必纠结于不同硬件平台的差异性,着重考虑算法的运行趋势。对于渐进分析的理论基础,了解过后才能真正明白这样做的可行性。首先需要掌握函数增长的渐进分析。

渐进的记号

Θ记号

之前在排序算法中知道插入排序的最坏情况下运行时间是 Θ(n2) ,现在我们可以解释这种记号的含义。
设有一个函数 f(n) ,用 Θ(g(n)) 表示如下的集合:
Θ(g(n)) ={ f(n) :存在正常数 c1 c2 n0 ,使对于所有的 nn0 ,有 0<=c1g(n)f(n)c2g(n) },则 f(n) 属于集合 Θ(g(n)) ,记作:

f(n)Θ(g(n))

在前面引入了Θ的概念,其效果相当于舍弃了低阶项和忽略了最高项的系数,下面证明
12n23n=Θ(n2) 。首先要确定常系数 c1 c2 n0 ,使对于所有的 nn0
c1n212n23nc2n2

化简得
c1123nc2

右边的不等式在 c212 的时候恒成立,同样,左边的不等式令 n7 ,则对于 c1114 成立。即证明了 12n23n=Θ(n2)

O记号

Θ记号渐进地给出了一个函数的上界和下界,而当一个函数只有渐进上界时,需要使用O记号。对于一个函数 g(n) ,用 O(g(n)) 表示一个函数集合:
O(g(n)) ={ f(n) :存在正常数 c1 n0 ,使对所有的 nn0 ,有 0f(n)c1g(n) }。
注意 f(n)=Θ(g(n)) 隐含着 f(n)=O(g(n)) ,因为Θ记号强于O记号,按集合论中的写法,有 Θ(g(n))O(g(n))

Ω记号

Ω记号渐进地给出了一个函数的渐进下界,对于一个函数 g(n) ,用 O(g(n)) 表示一个函数集合:
Ω(g(n)) ={ f(n) :存在正常数 c1 n0 ,使对所有的 nn0 ,有 f(n)c1g(n)0 }。
注意 f(n)=Θ(g(n)) 隐含着 f(n)=Ω(g(n)) ,因为Θ记号强于Ω记号,按集合论中的写法,有 Θ(g(n))Ω(g(n))

祝枫
2016年9月10日于哈尔滨

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值