AAAI 2020 | 首个使用 NAS 设计的 GCN,达到动作识别SOTA,代码将开源

点击我爱计算机视觉标星,更快获取CVML新技术


本文作者为52CV群友彭伟,现就读奥卢大学(芬兰) 博士二年级。

Github:https://github.com/xiaoiker

知乎:https://www.zhihu.com/people/ikerpeng

本文介绍被AAAI 2020录用的论文 Learning Graph Convolutional Network for Skeleton-based Human Action Recognition by Neural Searching,第一个使用神经架构搜索(NAS)设计图卷积网络(GCN)的工作,用于基于skeleton的人体动作识别中,在当前最大的两个数据集中达到目前最高的精度。代码将开源。

动作识别(Action recognition) 是计算机视觉领域中一个非常热门的研究话题。它具有很多有价值的应用,例如 安全监控,行为分析, 以及人机交互等等。 

但是,这个研究课题同时也是一个很有挑战的问题,尤其是对于背景极其复杂,或是存在遮挡的情况。

Skeleton 数据的出现,很大程度上解决了这一类的问题。Skeleton数据当中包含和运动直接相关的信息,对背景具有更好的鲁棒性,同时也能够有效的改善遮挡以及自遮挡的问题。

因此,基于skeleton数据的动作识别也是一个非常具有吸引力的研究课题。

但是对于skeleton这种不规则的具有图结构的数据,相对于image或者是video这种规整数据,使用经典的CNN 等神经网络进行特征提取就要困难很多了。 

但是,从2018年起,不断出现使用图卷积(Graph Convolutional Networks,GCN)来处理这个问题的工作。 基于前面的工作,本文也是想要通过改善GCN来进一步的提升基于骨架信息的动作识别的性能。

虽然GCN极大的提高了动作识别的性能, 但是还是存在很多需要改进的地方。这里我们主要从以下的两个方面去改善现有的GCN。

首先, 在这个任务当中大多数的GCN都是提供一个固定的矩阵(Embedding Matrix, EM)来编码数据节点之间的邻接关系,并且这个矩阵从第一层到最后一层一直都用。

其次,在这个任务上,大部分的GCN都是基于ICLR2017 Max [2]他们的工作做的。也就是说这一类的GCN都是通过一阶的 切比雪夫多项式(Chebshev polynomial)进行估计的。

而我们认为,将高层的特征表示限制是底层的拓扑结构当中是不合理的一种做法。此外,一阶的多项式估计并不能很好的捕捉到高阶的邻接关系。

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值