【论文笔记】NAS-GCN

NAS-GCN是首次将神经架构搜索应用于图卷积网络,以探索节点间的时空相关性,创建动态图模块。针对现有GCN预定义图结构的局限,NAS-GCN引入多跳模块,通过切比雪夫多项式逼近增强表示能力。使用进化策略进行内存高效的搜索,自动组装适应不同语义层级的图生成模块。
摘要由CSDN通过智能技术生成

Learning Graph Convolutional Network for Skeleton-Based Human Action Recognition by Neural Searching


通过神经搜索学习图卷积网络用于基于骨骼的人体动作识别

AAAI 2020


现有GCN预定义图结构在整个网络中共享,丢失隐式的关节相关性。主流频谱GCN近似为一阶跳没有涉及到高阶连接。

NAS-GCN:将Neural Architecture Search (NAS)引入GCN,探索节点之间的时空相关性并建立具有多个动态图模块的搜索空间。引入了多跳模块,希望突破一阶逼近对表示能力的限制。提出了一种相应的采样和内存有效的演化策略来搜索该空间。最终的体系结构证明了高阶近似和逐层动态图模块的有效性。

现有主流GCN:一阶切比雪夫多项式近似

本文:NAS用动态结构取代了固定图结构,在不同语义级别上探索了不同的图生成机制,在较少或没有人工协助的情况下获得出色的神经网络结构。

neuro-evolution strategy(ES)通过估计架构分布探索最佳GCN架构,以一种内存高效的方式搜索。

主要工作:

  1. 首次确定NAS-GCN架构
  2. 丰富GCN搜索空间(search space):在各种时空图模块基础上提供了多个动态图子结构;通过切比雪夫多项式逼近建立高阶连接扩大GCN卷积接收范围
  3. 基于演化的新颖的NAS搜索策略

NAS自动为不同语义级别的层组装图生成模块

GCN搜索空间:

NAS中神经搜索空间决定搜索策略

在这里插入图片描述

其中spatial m: ∀ i , j ∈ V , A D ( i , j ) = e ϕ ( h ( x i ) ) ⨂ ψ ( h ( x j ) ) ∑ j = 1 n e ϕ

CTR-GCN (Click Through Rate Graph Convolutional Networks) 和 TE-GCN (Temporal Edge-aware Graph Convolutional Networks) 是两种应用于点击率预测( Click-Through Rate prediction,CTP)的图神经网络模型,它们通常用于处理用户行为序列数据,如电商网站、搜索引擎等场景中的用户浏览、搜索历史。 CTR-GCN 模型利用了图形结构来捕捉用户的兴趣关联,并通过GCN(Graph Convolutional Network)对节点特征(用户和商品)进行编码,以便更好地理解用户的行为模式。它在一些基准数据集上,比如Criteo Kaggle Display Advertising Challenge的数据,能够提高广告点击预测的精度。 TE-GCN 则在此基础上加入了时间维度,考虑了事件发生的顺序和时间间隔,增强了模型对用户动态兴趣变化的理解。这种设计特别适合有时间序列信息的情况,例如推荐系统中的实时推荐。TE-GCN 会在一些注重时间序列依赖的数据集,如京东、淘宝等电商平台的数据集上,展现出优秀的性能。 然而,具体到每个数据集的表现,可能会受到多种因素的影响,包括但不限于数据质量、模型复杂度、超参数调整以及训练策略等。因此,在论文中会提供详细的实验结果对比,常见的评估指标有AUC(Area Under the ROC Curve)、Precision@K等。如果你想知道具体的排名或数值,建议查阅相关的研究论文或者官方发布的性能报告。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值