【论文笔记】NAS-GCN

NAS-GCN是首次将神经架构搜索应用于图卷积网络,以探索节点间的时空相关性,创建动态图模块。针对现有GCN预定义图结构的局限,NAS-GCN引入多跳模块,通过切比雪夫多项式逼近增强表示能力。使用进化策略进行内存高效的搜索,自动组装适应不同语义层级的图生成模块。
摘要由CSDN通过智能技术生成

Learning Graph Convolutional Network for Skeleton-Based Human Action Recognition by Neural Searching


通过神经搜索学习图卷积网络用于基于骨骼的人体动作识别

AAAI 2020


现有GCN预定义图结构在整个网络中共享,丢失隐式的关节相关性。主流频谱GCN近似为一阶跳没有涉及到高阶连接。

NAS-GCN:将Neural Architecture Search (NAS)引入GCN,探索节点之间的时空相关性并建立具有多个动态图模块的搜索空间。引入了多跳模块,希望突破一阶逼近对表示能力的限制。提出了一种相应的采样和内存有效的演化策略来搜索该空间。最终的体系结构证明了高阶近似和逐层动态图模块的有效性。

现有主流GCN:一阶切比雪夫多项式近似

本文:NAS用动态结构取代了固定图结构,在不同语义级别上探索了不同的图生成机制,在较少或没有人工协助的情况下获得出色的神经网络结构。

neuro-evolution strategy(ES)通过估计架构分布探索最佳GCN架构,以一种内存高效的方式搜索。

主要工作:

  1. 首次确定NAS-GCN架构
  2. 丰富GCN搜索空间(search space):在各种时空图模块基础上提供了多个动态图子结构;通过切比雪夫多项式逼近建立高阶连接扩大GCN卷积接收范围
  3. 基于演化的新颖的NAS搜索策略

NAS自动为不同语义级别的层组装图生成模块

GCN搜索空间:

NAS中神经搜索空间决定搜索策略

在这里插入图片描述

其中spatial m: ∀ i , j ∈ V , A D ( i , j ) = e ϕ ( h ( x i ) ) ⨂ ψ ( h ( x j ) ) ∑ j = 1 n e ϕ

### ST-GCN 和 AS-GCN 的区别、应用及对比 #### 区别 空间时间图卷积网络(ST-GCN)主要针对具有时空特性的数据设计,能够有效处理动态变化的数据结构。这类模型通常应用于视频动作识别等领域,在这些场景下,节点不仅代表静态实体,还携带随时间演变的信息[^1]。 另一方面,自适应图卷积网络(AS-GCN)则专注于解决传统GCN中预定义邻接矩阵带来的局限性。通过引入注意力机制或其他方法来自适应地学习每层的最佳连接模式,使得该类算法可以在不依赖于输入图结构的情况下工作良好,并能更好地捕捉不同任务下的特征表示[^2]。 #### 应用场景 对于ST-GCN而言,由于其擅长处理带有时间和空间维度的任务,因此非常适合用于人体姿态估计、交通流量预测以及社交网络传播分析等方面的应用程序开发;而AS-GCN因其灵活性和强大的表达能力,则更适用于那些难以预先确定理想拓扑关系的情况,比如推荐系统中的用户偏好建模或是生物信息学里基因调控路径的研究等场合[^3]。 #### 对比 当考虑两者之间的差异时,可以发现它们各自侧重不同的方面来改进标准形式的GCN- **架构特性**:ST-GCN强调对序列化事件的时间顺序敏感度,利用多尺度聚合策略增强局部与全局上下文感知力;相比之下,AS-GCN聚焦于优化内部交互方式,借助软分配方案实现更加精准的关系权重调整。 - **适用范围**:前者倾向于连续型且存在明显周期规律的现象模拟;后者则适合离散对象间复杂关联挖掘,尤其是在缺乏明确指导先验知识的前提下表现尤为突出。 ```python # 示例代码片段展示如何加载两个框架的基础库 import st_gcn as stg # 假设这是ST-GCN的一个Python包 from as_gcn import AdaptiveGraphConvLayer # 同样假设这是AS-GCN的一部分接口 # 创建实例并初始化参数... st_model = stg.ST_GCN(input_channels=3, num_class=60) as_layer = AdaptiveGraphConvLayer(in_features=16, out_features=32) print("ST-GCN Model:", st_model) print("AS-GCN Layer:", as_layer) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值