Learning Graph Convolutional Network for Skeleton-Based Human Action Recognition by Neural Searching
通过神经搜索学习图卷积网络用于基于骨骼的人体动作识别
AAAI 2020
现有GCN预定义图结构在整个网络中共享,丢失隐式的关节相关性。主流频谱GCN近似为一阶跳没有涉及到高阶连接。
NAS-GCN:将Neural Architecture Search (NAS)引入GCN,探索节点之间的时空相关性并建立具有多个动态图模块的搜索空间。引入了多跳模块,希望突破一阶逼近对表示能力的限制。提出了一种相应的采样和内存有效的演化策略来搜索该空间。最终的体系结构证明了高阶近似和逐层动态图模块的有效性。
现有主流GCN:一阶切比雪夫多项式近似
本文:NAS用动态结构取代了固定图结构,在不同语义级别上探索了不同的图生成机制,在较少或没有人工协助的情况下获得出色的神经网络结构。
neuro-evolution strategy(ES)通过估计架构分布探索最佳GCN架构,以一种内存高效的方式搜索。
主要工作:
- 首次确定NAS-GCN架构
- 丰富GCN搜索空间(search space):在各种时空图模块基础上提供了多个动态图子结构;通过切比雪夫多项式逼近建立高阶连接扩大GCN卷积接收范围
- 基于演化的新颖的NAS搜索策略
NAS自动为不同语义级别的层组装图生成模块
GCN搜索空间:
NAS中神经搜索空间决定搜索策略
其中spatial m: ∀ i , j ∈ V , A D ( i , j ) = e ϕ ( h ( x i ) ) ⨂ ψ ( h ( x j ) ) ∑ j = 1 n e ϕ