会“举一反三”的图像质量评价模型

主题词

图像质量评价(IQA),无参考评价,模型扩展性

深度元学习,元知识,小样本学习

由于在实际环境下数据标注成本过高,图像质量评价是典型的小样本学习问题。因此现有的直接利用深度卷积神经网络构建的图像质量评价模型容易出现过拟合问题,导致模型的可扩展性不理想。

针对该问题,西安电子科技大学李雷达教授团队,在CVPR2020上发表的论文《MetaIQA: Deep Meta-learning for No-Reference Image Quality Assessment》,提出了基于深度元学习的高扩展性图像质量评价方法。

将不同失真类型的图像质量评价问题当作相关任务,利用元学习提取不同失真类型的图像质量间共享的元知识,即鲁棒的图像质量先验。对于待评价的图像失真,利用图像质量评价元模型,可以实现快速泛化;大量的实验结果验证了所提出的方法具有很强的扩展能力。

论文信息

标题:MetaIQA: Deep Meta-learning for No-Reference Image Quality Assessment

作者:Hancheng Zhu, Leida Li*, Jinjian Wu, Weisheng Dong, Guangming Shi

发表刊物:IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2020), Washington, USA, June 2020.

引用格式:H. Zhu, L. Li, J. Wu, W. Dong, G. Shi, “MetaIQA: Deep Meta-learning for No-Reference Image Quality Assessment," in Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Washington, USA, June 2020.

研究背景

图像是人们日常生活获取信息的重要载体,图像在获取、压缩和传输等过程中会引入各种不同类型的失真。图像质量客观评价方法可以自动地对图像质量进行评价,同时保持与人眼感知的一致性,在图像处理、成像系统的设计与优化、图像检索等众多领域中有重要的应用价值。

由于实际环境下图像中的失真类型呈现多样化特性,失真的特性之间也存在较大差异,使得通用型的图像质量评价模型构建极具挑战。本文尝试从元学习的角度解决不同失真类型的图像质量评价模型的可扩展性问题。

研究方法

本研究基于元学习的学会学习(learn to learn)的能力,利用基于梯度优化的深度元学习方法获取具有快速扩展能力的图像质量先验模型。

图1 研究方法框架

1.利用基于梯度优化的元学习框架学习具有不同图像失真类型质量评价任务上的先验模型,获取图像中不同失真类型的共享先验知识;

2. 把质量先验模型看作预训练模型,通过对未知失真类型IQA任务的少量标注样本进行微调训练,可以快速泛化到目标图像的质量评价任务上。

研究结果

本研究在国际通用的合成失真和真实失真的IQA数据库进行验证,提出的先验模型不仅可以直接有效地预测未见失真类型图像的质量分数,而且通过少量训练样本的微调可以快速扩展到真实失真图像的质量评价任务上。通过与未使用元学习的基准方法进行比较,本研究方法可以提高5%左右的预测准确性,实验结果见表1和表2。

表1 模拟失真图像质量数据库TID2013和KADID-10K上的性能

表2 真实失真图像质量数据库CID2013、LIVE Challenge和KonIQ-10K上的性能

图2展示了利用合成失真图像获取的质量先验模型在提取真实失真图像的梯度可视化图,可以看到梯度图准确地捕捉到了真实失真在图像中的位置,这进一步证明了本研究方法可以学习到不同失真的共享先验知识。

图2 利用质量先验模型获取真实失真图像的梯度图

研究结论

在五个国际通用的IQA数据库上进行的实验表明,本研究方法在泛化能力和评价准确性方面均优于现有的无参考图像质量评价方法。此外,从合成失真中学习到的质量先验模型也可以快速扩展到真实失真图像的质量评价任务中,这也为实际应用的IQA模型的设计提供了依据,该方法对研究图像质量评价在小样本学习上具有重要的借鉴意义和参考价值。

更多信息    详见论文

论文链接:https://arxiv.org/abs/2004.05508

代码链接

https://github.com/zhuhancheng/MetaIQA

作者简介

第一作者:祝汉城,博士生,中国矿业大学信息与控制工程学院。研究领域:计算机视觉,图像情感计算,图像感知评价。E-mail: zhuhancheng@cumt.edu.cn

通信作者:李雷达,教授、博士生导师,西安电子科技大学人工智能学院,研究领域:图像与视频质量评价、视觉情感分析、图像信息安全等。E-mail: ldli@xidian.edu.cn。

个人主页:https://web.xidian.edu.cn/ldli/

申明:本文发布的网站内容均不代表本号观点,本号旨在提供参考素材以便学习交流。

备注:质量

图像增强与质量评价交流群

图像增强、去雾、去雨、图像修补、图像恢复等技术,

若已为CV君其他账号好友请直接私信。

我爱计算机视觉

微信号:aicvml

QQ群:805388940

微博知乎:@我爱计算机视觉

投稿:amos@52cv.net

网站:www.52cv.net

在看,让更多人看到  

目 录 第一章 引言 1 1.1 图像质量评价的定义 1 1.2 研究对象 1 1.3 方法分类 2 1.4 研究意义 3 第二章 历史发展和研究现状 4 2.1 基于手工特征提取的图像质量评价 4 2.1.1 基于可视误差的“自底向上”模型 4 2.1.1.1 Daly模型 4 2.1.1.2 Watson’s DCT模型 5 2.1.1.3 存在的问题 5 2.1.2 基于HVS的“自顶向下”模型 5 2.1.2.1 结构相似性方法 6 2.1.2.2 信息论方法 8 2.1.2.3 存在的问题 9 2.2 基于深度学习图像质量评价 10 2.2.1 CNN模型 10 2.2.2 多任务CNN模型 12 2.2.3 研究重点 15 第三章 图像质量评价数据集和性能指标 16 3.1 图像质量评价数据集简介 16 3.2 图像质量评价模型性能指标 17 第四章 总结与展望 19 4.1 归纳总结 19 4.2 未来展望 19 参考文献 21 第一章 引言 随着现代科技的发展,诸如智能手机,平板电脑和数码相机之类的消费电子产品快速普及,已经产生了大量的数字图像。作为一种更自然的交流方式,图像中的信息相较于文本更加丰富。信息化时代的到来使图像实现了无障碍传输,图像在现代社会工商业的应用越来越广泛和深入,是人们生活中最基本的信息传播手段,也是机器学习的重要信息源。 图像质量是图像系统的核心价值,此外,它也是图像系统技术水平的最高层次。但是,对图像的有损压缩、采集和传输等过程会很容易导致图像质量下降的问题。例如:在拍摄图像过程中,机械系统的抖动、光学系统的聚焦模糊以及电子系统的热噪声等都会造成图像不够清晰;在图像存储和传输过程中,由于庞大的数据量和有限通讯带宽的矛盾,图像需要进行有损压缩编码,这也会导致振铃效应、模糊效应和块效应等图像退化现象的出现。所以,可以说图像降质在图像系统的各个层面都会很频繁地出现,对图像质量作出相应的客观评价是十分重要且有意义的。为了满足用户在各种应用中对图像质量的要求,也便于开发者们维持、控制和强化图像质量图像质量评价(Image Quality Assessment,IQA)是一种对图像所受到的质量退化进行辨识和量化的
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值