01
概述
由于观察视角和相互遮挡等等因素,我们对三维世界的观察常常是片面且残缺的。
为了由有限而且残缺的观测恢复完整几何描述,多种三维重建方法被提出:
1.当基于一个单一观察视角时,依赖先验和推理,我们可以生成并补全得到完整的三维几何;
2.当有一系列互有重叠的残缺观察时,通过优化和配准,我们可以逐步实现三维重建。
为了更好地促进三维重建社区的发展, 新加坡南洋理工大学S-Lab,商汤科技海外研发中心IRDC和上海人工智能实验室一起构建了一个大规模且丰富的多视角残缺点云(MVP)数据集和评测基准。此外,在计算机视觉顶会ICCV2021上,我们将举办MVP challenges,以供研究人员测试和检验更优的点云补全和点云配准方法。具体信息可以参考下列相关网站:
Database:
https://mvp-dataset.github.io/
Codebase:
https://github.com/paul007pl/MVP_Benchmark
Arxiv Paper:
https://arxiv.org/abs/2104.10154
比赛网址:
https://competitions.codalab.org/competitions/33430
多视角残缺点云
高质量完整点云
02
任务简介
2.1 单视角点云补全
我们 准备了一个训练数据集(62400, 2048, 3),一个测试数据集(41600, 2048, 3)和一个额外测试数据集(59800, 2048, 3)。其中,训练数据集和测试数据集于VRCNet中2048个点的数据吻合,额外测试数据集不提供GroundTruth,只供用户生成结果以提交到比赛网站检验和竞赛。
2.2 双视角点云配准
类似2.1,我们准备了一个训练数据集(6400, 2048, 3)x 2,一个测试数据集(1200, 2048, 3)x 2,和一个额外测试数据集(2000, 2048, 3)x 2。训练集用于训练,测试集用于检验,最后提交额外测试集上预测的相对的transformation到比赛网站。
注意,测试数据集中有20%左右的数据有不受限的相对旋转,而其他80%左右点云数据对中,相对的旋转在[0, 45°]之间。
03
赛程安排
3.1 注意事项:
1.公平起见,比赛不允许使用任何额外数据集。
2.第一阶段,参赛者提交模型预测结果;第二阶段,需要参赛者提供训练好的模型和详细使用方案(参赛者可以事先提交Arxiv版本,如果担心idea泄露), 我们将离线监测,并依据此项检测结果最后公布冠亚季军;第三阶段,需要参赛者提交详细技术报告,鼓励在Testing set上做充分的消融实验。
3.获奖者将得到丰厚的现金奖励(具体金额后续公布)和奖状证书。
3.2 重要日期:
本次比赛Top获胜队伍将会受邀投稿于对应的ICCV Workshop:
https://sense-human.github.io/
2021 年 7 月 12 日 - 比赛网站支持提交。
2021 年 9 月 12 日 – 比赛网站最终提交截止日期。
2021 年 9 月 19 日 – 离线监测模型最终提交截止日期。
2021 年 10 月 4 日 - 技术报告提交截止日期。
2021 年 10 月 17 日 - 在 ICCV Workshop进行颁奖
各类奖品丰厚,欢迎大家踊跃参加~
备注:ICCV
ICCV 交流群
扫码备注拉你入群。
在看,让更多人看到