朴实无华且高效!视觉Transformer中ReLU替代softmax,DeepMind新招让成本速降

关注公众号,发现CV技术之美

本文转自机器之心,作者Panda。

Transformer 架构已经在现代机器学习领域得到了广泛的应用。注意力是 transformer 的一大核心组件,其中包含了一个 softmax,作用是产生 token 的一个概率分布。softmax 有较高的成本,因为其会执行指数计算和对序列长度求和,这会使得并行化难以执行。

Google DeepMind 想到了一个新思路:用某种不一定会输出概率分布的新方法替代 softmax 运算。他们还观察到:在用于视觉 Transformer 时,使用 ReLU 除以序列长度的注意力可以接近或匹敌传统的 softmax 注意力。

4e9ce291d2e418756555e712eef5933d.png

论文:https://arxiv.org/abs/2309.08586

这一结果为并行化带来了新方案,因为 ReLU 注意力可以在序列长度维度上并行化,其所需的 gather 运算少于传统的注意力。

方法

注意力

注意力的作用是通过一个两步式流程对 d 维的查询、键和值 {q_i, k_i, v_i} 进行变换。

在第一步,通过下式得到注意力权重 042125433bf79748661e325d75d3d13b.png

f823c4fd26510487e43dd0d8d8dde5d8.png

其中 ϕ 通常是 softmax。

下一步,使用这个注意力权重来计算输出c98e7c5ac0f5d137612a0090718ae994.png 这篇论文探索了使用逐点式计算的方案来替代 ϕ。

ReLU 注意力

DeepMind 观察到,对于 1 式中的 ϕ = softmax,5a6154e3d3871fdd10ca6ac80267b98c.png是一个较好的替代方案。他们将使用 143ffc1f1e8760a1906c3f19ff353911.png的注意力称为 ReLU 注意力。

已扩展的逐点式注意力

研究者也通过实验探索了更广泛的 36bd63485cfdc2c930de1fd65750742c.png 选择,其中 α ∈ [0, 1] 且 h ∈ {relu,relu² , gelu,softplus, identity,relu6,sigmoid}。

序列长度扩展

他们还观察到,如果使用一个涉及序列长度 L 的项进行扩展,有助于实现高准确度。之前试图去除 softmax 的研究工作并未使用这种扩展方案。

在目前使用 softmax 注意力设计的 Transformer 中,有 1613019f0383172dd82d3b5b1c478a0b.png ,这意味着 fd427fe3f46083950fdabd7cd572c900.png 尽管这不太可能是一个必要条件,但 aceae42ed4e93eac2a11d7a707906a89.png能确保在初始化时 37dbfde8e57082e05a4d1a0b35f4ed18.png 的复杂度是 e1e6dbe0482e7f3bfa3abf3f8db26913.png ,保留此条件可能会减少替换 softmax 时对更改其它超参数的需求。

在初始化的时候,q 和 k 的元素为 O (1),因此 d86ccdb364debd183b56cacda4ac4978.png 也将为 O (1)。ReLU 这样的激活函数维持在 O (1),因此需要因子cb3a2cb86e693dce48c8bb733cb5b031.png才能使 fd18fdc6655ce490c4792565d5b8d551.png 的复杂度为  58c14b85a8a28156e28fec9e9e43cac2.png

实验与结果

主要结果

图 1 说明在 ImageNet-21k 训练方面,ReLU 注意力与 softmax 注意力的扩展趋势相当。X 轴展示了实验所需的内核计算总时间(小时)。ReLU 注意力的一大优势是能在序列长度维度上实现并行化,其所需的 gather 操作比 softmax 注意力更少。

c2a91ae0d7ba308babc694df6bd409b8.png

序列长度扩展的效果

图 2 对比了序列长度扩展方法与其它多种替代 softmax 的逐点式方案的结果。具体来说,就是用 relu、relu²、gelu、softplus、identity 等方法替代 softmax。X 轴是 α。Y 轴则是 S/32、S/16 和 S/8 视觉 Transformer 模型的准确度。最佳结果通常是在 α 接近 1 时得到。由于没有明确的最佳非线性,所以他们在主要实验中使用了 ReLU,因为它速度更快。

9afbe2be719e900b7a5331771ed53dfe.png

qk-layernorm 的效果

主要实验中使用了 qk-layernorm,在这其中查询和键会在计算注意力权重前被传递通过 LayerNorm。DeepMind 表示,默认使用 qk-layernorm 的原因是在扩展模型大小时有必要防止不稳定情况发生。图 3 展示了移除 qk-layernorm 的影响。这一结果表明 qk-layernorm 对这些模型的影响不大,但当模型规模变大时,情况可能会不一样。

440556c6040400ae7a40d975eb47f622.png

添加门的效果

先前有移除 softmax 的研究采用了添加一个门控单元的做法,但这种方法无法随序列长度而扩展。具体来说,在门控注意力单元中,会有一个额外的投影产生输出,该输出是在输出投影之前通过逐元素的乘法组合得到的。图 4 探究了门的存在是否可消除对序列长度扩展的需求。总体而言,DeepMind 观察到,不管有没有门,通过序列长度扩展都可以得到最佳准确度。也要注意,对于使用 ReLU 的 S/8 模型,这种门控机制会将实验所需的核心时间增多大约 9.3%。

b5e18be70561cb4995225497390fc823.png

0eea9e534752bd3e250c88a6c1383dac.jpeg

END

欢迎加入「计算机视觉交流群👇备注:CV

f9ab1a20c6b5f2de682ba9c87931b2de.png

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值