SFS人脸细节增强

该技术使用Gauss-Newton solver在GPU上实现实时人脸细节增强,能达到每秒30帧。通过二阶球面谐波函数估计光照并优化深度图,同时引入前一帧光照系数的约束以保持稳定性。在深度图优化过程中,结合梯度、平滑和深度约束,以及自适应优化来处理反射率变化。这种方法在3D人脸重建中能有效提升几何细节。
摘要由CSDN通过智能技术生成

Real-time Shading-based Refinement for Consumer Depth Cameras

1.实现方式

Gauss-Newton solver implanted on GPU。

2.效率

可达每秒30帧

3.实现流程

  1)前提

a.物体表面Lambertian假设。

b.入射光为球谐波。

入射辐照度是关于物体表面法向的函数。

2)光照估计

首先假设RGB图像每个通道的灰度亮度均相等。

采用二阶球面谐波函数计算反射率:

B(i, j)是反射光强,k(i, j)是反射率,lk二阶球面谐波的第k个系数(共9个)。

由于需要进行实时计算,因此文中假设光强只与法向相关,不考虑局部可见性。

Hk(n(i, j)):

由于是对RGB-D图片进行增强,因此我们已经预先知道了每个3D点的xyz坐标,也就知道了其对应的法向量。同时,先忽略反射率系数,那么现在需要求的就只有光照系数lk,光照系数的求解只要最小化以下函数

最小化后,即I=B。Nx、Ny是图像大小,I是图像亮度。计算以上最优问题可以等效为计算以下线性方程

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值