CNN: 深度估计 & 光流 & 残差流

本文探讨了深度学习在自动驾驶中的关键任务,包括深度估计、光流和残差流。深度估计通过无监督学习预测深度和相机位姿,光流利用监督和自监督法估计像素级运动,而残差流则用于分离静态背景与动态目标的运动。SfMLearner和Syndistnet是深度估计的代表工作,Flownet和DSTFlow处理光流问题,ResFlowNet则关注残差流的学习。
摘要由CSDN通过智能技术生成

一、深度估计

SfMLearner(2017, Unsupervised learning of depth and ego-motion from video)无监督学习的优势是可以使用大量数据。

对于3D场景,给定不同的相机pose,可以获得不同的2D图片。如下图所示。那么,换一个思路,使用一个Depth network从单视野预测深度 + Pose network预测相邻帧图像的观察相机发生的相对旋转R和平移T(即ego-camera pose estimation),就可以从Reconstructed的3D Scene投影得到观察相机变换后的相邻帧的图像。

(Cited from CVPR report by Tinghui Zhou)

随后,根据同一个物体的同一个位置在不同ego-camera pose的相邻帧上的颜色\亮度应该是一致的(这里隐含了Lambertian反射假设),构建photometric loss,进而对Single-view depth network和Pose network进行自监督学习。如下图所示:

Depth CNN和Pose CNN是一同训练的,但部署时支持单

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

yuyuelongfly

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值