一、深度估计
SfMLearner(2017, Unsupervised learning of depth and ego-motion from video)无监督学习的优势是可以使用大量数据。
对于3D场景,给定不同的相机pose,可以获得不同的2D图片。如下图所示。那么,换一个思路,使用一个Depth network从单视野预测深度 + Pose network预测相邻帧图像的观察相机发生的相对旋转R和平移T(即ego-camera pose estimation),就可以从Reconstructed的3D Scene投影得到观察相机变换后的相邻帧的图像。
(Cited from CVPR report by Tinghui Zhou)
随后,根据同一个物体的同一个位置在不同ego-camera pose的相邻帧上的颜色\亮度应该是一致的(这里隐含了Lambertian反射假设),构建photometric loss,进而对Single-view depth network和Pose network进行自监督学习。如下图所示:
Depth CNN和Pose CNN是一同训练的,但部署时支持单