什么检测器能够兼顾准确率和模型效率?如何才能实现?
去年11月底,谷歌大脑提出 EfficientDet,在广泛的资源限制下,这类模型的效率仍比之前最优模型高出一个数量级。具体来看,结构只使用了 52M 参数、326B FLOPS 的 EfficientDet-D7 在 COCO 数据集上实现了 51.0 mAP,准确率超越之前最优检测器(+0.3% mAP),其规模仅为之前最优检测器的 1/4,而后者的 FLOPS 更是 EfficientDet-D7 的9.3 倍。EfficientDet公布后,在COCO榜单上达到了史无前例的成绩。
昨天,谷歌开源了精简版EfficientDet-Lite,今天,官方公布了基于TensorFlow的完整代码:
代码链接:
https://github.com/google/automl/tree/master/efficientdet
论文链接:
https://arxiv.org/abs/1911.09070
下面,我们简单的介绍一下EfficientDet。
先看看效果
图 1 和图 4 展示了多个模型在 COCO 数据集上的性能对比情况。在类似的准确率限制下,EfficientDet 的 FLOPS 仅为 YOLOv3 的 1/28、RetinaNet 的 1/30、NASFPN 的 1/19。
图 1:模型 FLOPS vs COCO 数据集准确率,所有数字均为单个模型在单一尺度下所得。EfficientDet 的计算量较其他检测器少,但