谷歌开源EfficientDet:实现新SOTA,又快又准的目标检测器

什么检测器能够兼顾准确率和模型效率?如何才能实现?

去年11月底,谷歌大脑提出 EfficientDet,在广泛的资源限制下,这类模型的效率仍比之前最优模型高出一个数量级。具体来看,结构只使用了 52M 参数、326B FLOPS 的 EfficientDet-D7 在 COCO 数据集上实现了 51.0 mAP准确率超越之前最优检测器(+0.3% mAP),其规模仅为之前最优检测器的 1/4,而后者的 FLOPS 更是 EfficientDet-D7 的9.3 倍。EfficientDet公布后,在COCO榜单上达到了史无前例的成绩。

昨天,谷歌开源了精简版EfficientDet-Lite今天,官方公布了基于TensorFlow的完整代码

代码链接:

https://github.com/google/automl/tree/master/efficientdet

论文链接:

https://arxiv.org/abs/1911.09070

下面,我们简单的介绍一下EfficientDet。

先看看效果

图 1 和图 4 展示了多个模型在 COCO 数据集上的性能对比情况。在类似的准确率限制下,EfficientDet 的 FLOPS 仅为 YOLOv3 的 1/28、RetinaNet 的 1/30、NASFPN 的 1/19。


图 1:模型 FLOPS vs COCO 数据集准确率,所有数字均为单个模型在单一尺度下所得。EfficientDet 的计算量较其他检测器少,但

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值