摄影测量中的计算机视觉之基础知识.

计算机视觉说白了也就是在和图像打交道, 而图像就是一个投影空间.
现实世界中的物体在照片中会改变大小形状.
但是有一些东西是不变的, 就比如点还是点, 直线还是直线,圆还是圆(可能是椭圆)
对一幅图旋转和平移不会改变它的长度和体积,距离角的比值,几何中心,平行关系以及和
均匀缩放
不均匀缩放,剪切

重合几何(incidence)
主要就是包含点的共线和线的相交. 也就是说,经过投影后, 如果原来点 X 1 \mathbf{X}_{1} X1, X 2 \mathbf{X}_{2} X2, X 3 \mathbf{X}_{3} X3在同一条直线 l \mathbf{l} l上,那么它们变换后还是在同一条直线上.
如果原来线 l 1 \mathbf{l}_{1} l1, l 2 \mathbf{l}_{2} l2, l 3 \mathbf{l}_{3} l3相交于同一点 X \mathbf{X} X,那么它们变换后还是相交于用一个点.

交比(Cross Ratio)
主要就是说,共线的四个点,经过投影变换后,点 X 1 \mathbf{X}_{1} X1和点 X 3 \mathbf{X}_{3} X3之间的距离乘上点 X 2 \mathbf{X}_{2} X2和点 X 4 \mathbf{X}_{4} X4之间的距离, 再除以(点 X 1 \mathbf{X}_{1} X1和点 X 4 \mathbf{X}_{4} X4之间的距离乘以点 X 2 \mathbf{X}_{2} X2)和点 X 3 \mathbf{X}_{3} X3),这个比值是不变的.
C R ( x 1 , x 2 , x 3 , x 4 ) = d ( x 1 , x 3 ) ⋅ d ( x 2 , x 4 ) d ( x 1 , x 4 ) ⋅ d ( x 2 , x 3 ) C R\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}, \mathbf{x}_{4}\right)=\frac{d\left(\mathbf{x}_{1}, \mathbf{x}_{3}\right) \cdot d\left(\mathbf{x}_{2}, \mathbf{x}_{4}\right)}{d\left(\mathbf{x}_{1}, \mathbf{x}_{4}\right) \cdot d\left(\mathbf{x}_{2}, \mathbf{x}_{3}\right)} CR(x1,x2,x3,x4)=d(x1,x4)d(x2,x3)d(x1,x3)d(x2,x4)
在这里插入图片描述

什么是齐次坐标系呢?
其实就是点和线在投影空间中的表示.
投影空间的特点就是一个向量,和这个向量的倍数代表的是同一个实体.
一个图像点 ( x , y ) T (x, y)^{\mathrm{T}} (x,y)T在投影空间 P 2 \mathbb{P}^{2} P2可以用一个3-vector表示:
x = λ ⋅ ( x , y , 1 ) T = ( u , v , w ) T \mathbf{x}=\lambda \cdot(x, y, 1)^{\mathrm{T}}=(u, v, w)^{\mathrm{T}} x=λ(x,y,1)T=(u,v,w)T
∥ x ∥ = u 2 + v 2 + w 2 ≠ 0 \|\mathbf{x}\|=\sqrt{u^{2}+v^{2}+w^{2}} \neq 0 x=u2+v2+w2 =0
这个w被叫做齐次分部.
x,y是欧几里得分部.
x = u w  and  y = v w  for  w ≠ 0 x=\frac{u}{w} \quad \text { and } \quad y=\frac{v}{w} \quad \text { for } \quad w \neq 0 x=wu and y=wv for w=0
点的表达: Euclidean normalized
x = 1 w ( u v w ) = ( x y 1 ) \mathbf{x}=\frac{1}{w}\left(\begin{array}{c} {u} \\ {v} \\ {w} \end{array}\right)=\left(\begin{array}{c} {x} \\ {y} \\ {1} \end{array}\right) x=w1uvw=xy1
线的表达:HESSIAN normal form (except for the sign of d )
l = 1 1 a 2 + b 2 ( a b c ) = ( cos ⁡ ϕ sin ⁡ ϕ d ) \mathbf{l}=\frac{1}{\sqrt{\frac{1}{a^{2}+b^{2}}}}\left(\begin{array}{l} {a} \\ {b} \\ {c} \end{array}\right)=\left(\begin{array}{c} {\cos \phi} \\ {\sin \phi} \\ {d} \end{array}\right) l=a2+b21 1abc=cosϕsinϕd
这里好像也没说线的其次分部必须为0,不过在其它资料上看到的都是其次分部为0.

一些性质:点和线的二元性
重合关系:
x ⊤ l = l ⊤ x = a u + b v + c w = 0 \mathbf{x}^{\top} \mathbf{l}=\mathbf{l}^{\top} \mathbf{x}=a u+b v+c w=0 xl=lx=au+bv+cw=0
线的相交:
x = l 1 × l 2 det ⁡ [ l 1 l 2 l 3 ] = 0 \begin{aligned} &\mathbf{x}=\mathbf{l}_{1} \times \mathbf{l}_{2}\\ &\operatorname{det}\left[\begin{array}{lll} {\mathbf{l}_{1}} & {\mathbf{l}_{2}} & {\mathbf{l}_{3}} \end{array}\right]=0 \end{aligned} x=l1×l2det[l1l2l3]=0

点的共线:
l = x 1 × x 2 det ⁡ [ x 1 x 2 x 3 ] = 0 \begin{aligned} &\mathbf{l}=\mathbf{x}_{1} \times \mathbf{x}_{2}\\ &\operatorname{det}\left[\begin{array}{lll} {\mathbf{x}_{1}} & {\mathbf{x}_{2}} & {\mathbf{x}_{3}} \end{array}\right]=0 \end{aligned} l=x1×x2det[x1x2x3]=0

另外一个特别重要的就是理想点(无限远点)和理想线(无限远线).
理想点:
x ∞ = ( u , v , 0 ) ⊤ \mathbf{x}_{\infty}=(u, v, 0)^{\top} x=(u,v,0)
理想线:
I ∞ = ( 0 , 0 , c ) ⊤ \mathbf{I}_{\infty}=(0,0, c)^{\top} I=(0,0,c)
两条平行线相交于无限远点:
l 1 × l 2 = ( b , − a , 0 ) ⊤ \mathbf{l}_{1} \times \mathbf{l}_{2}=(b,-a, 0)^{\top} l1×l2=(b,a,0)

投影空间:
P 2 = R 2 ∪ x ∞ ∪ l ∞ \mathbf{P}^{2}=\mathbf{R}^{2} \cup \mathbf{x}_{\infty} \cup \mathbf{l}_{\infty} P2=R2xl

还有一个比较重要的:
如果H是从一个投影空间到令一个空间的转化.那么
对于点的转化是:
x ′ = H x \mathbf{x}^{\prime}=\mathbf{H} \mathbf{x} x=Hx

对于线的转化是:
l ′ = ( H − 1 ) ⊤ l = H − T l \mathbf{l}^{\prime}=\left(\mathbf{H}^{-1}\right)^{\top} \mathbf{l}=\mathbf{H}^{-\mathbf{T}} \mathbf{l} l=(H1)l=HTl

参考:
https://en.wikipedia.org/wiki/Cross-ratio
https://en.wikipedia.org/wiki/Incidence_(geometry)

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值