序贯最小二乘平差 / 递推最小二乘平差 公式推导

存疑:递推最小二乘平差应该和序贯平差的概念是一样的?因为序贯平差的概念为 “ 序贯平差也叫逐次相关间接平差,它是将观测值分成两组或多组,按组的顺序分别做相关间接平差,从而使其达到与两期或多期网一起做整体平差同样的结果。”

Part.I 预备知识

Chap.I 基础概念

  • 序贯平差也叫逐次相关间接平差,它是将观测值分成两组或多组,按组的顺序分别做相关间接平差,从而使其达到与两期或多期网一起做整体平差同样的结果。
  • 分组平差的优势:1)处理大型平差问题时,因分组平差的法方程的阶数较低,可以克服不分组时计算机容量不敷应用的困难。2)在一定情况下,例如分区平差,各组可同步进行计算,从而可以缩短计算的周期。3)当一个测量网已经完成了平差计算之后,因网形扩展或加密而增加了新的观测数据时,只需将原平差结果作为相关观测值并顾及其权逆阵,与新观测值一并进行平差,即可求得与新旧资料整体平差的相同结果。

Chap.II 符号含义

用到的符号和最小二乘平差中的符号相同

最小二乘平差:https://blog.csdn.net/Gou_Hailong/article/details/122188144

另外,在递推最小二乘中用到的几个新的符号的含义如下:

Part.II 递推最小二乘平差原理

一般情况下,观测值越多,只要处理得合适,最小二乘估计的均方误差就越小。采用批处理实现的最小二乘算法,须存储所有的量测值。若量测值数量十分庞大,则计算机必须具备巨大的存储容量,这显然是不经济的。递推最小二乘平差从每次获得的量测值中提取被估计量的信息,用于修正上一步所得的估计。获得量测的次数越多,修正的次数也越多,估计的精度也越高。下面详细介绍该算法。

Chap.I 递推公式

下面是递推的结论

起始项(初值)可由最小二乘得到。另外,上面的递推公式可以写作更简洁的形式:

上面的三个式子的含义:

  • K k + 1 K_{k+1} Kk+1(一个中间变量)是增益矩阵
  • N k + 1 N_{k+1} Nk+1是方差阵,所以第二个式子是方差阵递推公式
  • X ^ k + 1 \hat{X}_{k+1} X^k+1 是待估状态量,所以第三个式子是状态递推公式

递推最小二乘可以看成是卡尔曼滤波的特殊形式,其特殊之处在于待估参量是不随时间变化的,而是常值。状态递推公式在卡尔曼滤波中分为一步预测和量测更新(修正),这里因为待估参量是常值,所以预测值就是之前的估值(没什么好预测的)。

Chap.II 递推公式推导




下面的补于2022-10-25,参考严龚敏老师的视频讲座

Chap.III 一图流

在这里插入图片描述

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

流浪猪头拯救地球

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值