该行为的核心是能解析PDF文件,并且其中的图片内容可以通过OCR获取到文字,进行识别和解析。
解析PDF中图像的原理
在RAG系统中,解析PDF中的图像通常涉及以下步骤:
- 提取图像:从PDF文件中提取嵌入的图像。
- 图像处理:将提取的图像转换为可分析的格式(如JPEG/PNG)。
- 图像内容分析:使用OCR(光学字符识别)提取图像中的文本,或使用图像识别技术分析图像内容。
- 整合到RAG:将提取的内容作为上下文输入到RAG的检索和生成流程中。
完整可用代码
#from langchain.document_loaders import PyPDFLoader from langchain_community.document_loaders import PyPDFLoader from langchain.text_splitter import RecursiveCharacterTextSplitter #from langchain_community.llms import Ollama from langchain_ollama import OllamaLLM #from langchain.embeddings import HuggingFaceBgeEmbeddings from langchain_huggingface import HuggingFaceEmbeddings #from langchain.vectorstores import FAISS from langchain_community.vectorstores import FAISS #from langchain.llms import HuggingFacePipeline from langchain_community.llms import HuggingFacePipeline from langchain.chains import RetrievalQA from transformers import pipeline from langchain.prompts import PromptTemplate from pathlib import Path import fitz # PyMuPDF,用于PDF处理 import pytesseract # 用于OCR from PIL import Image # 图像处理 import io import os import torch from langchain.docstore.document import Document def extract_images_from_pdf(pdf_path, output_dir="extracted_images"): """ 从PDF中提取图像并保存到指定目录 参数: pdf_path: PDF文件路径 output_dir: 提取图像的保存目录 返回: 提取的图像文件路径列表 """ # 创建输出目录 if not os.path.exists(output_dir): os.makedirs(output_dir) # 打开PDF文件 pdf_document = fitz.open(pdf_path) image_paths = [] # 遍历每一页 for page_num in range(len(pdf_document)): page = pdf_document[page_num] image_list = page.get_images(full=True) # 获取页面中的所有图像 # 遍历页面中的每张图像 for img_index, img in enumerate(image_list): xref = img[0] # 图像的xref引用 base_image = pdf_document.extract_image(xref) # 提取图像数据 image_bytes = base_image["image"] # 图像的字节数据 image_ext = base_image["ext"] # 图像扩展名(如jpeg, png) # 保存图像 image_filename = f"{output_dir}/image_page{page_num+1}_{img_index}.{image_ext}" with open(image_filename, "wb") as image_file: image_file.write(image_bytes) image_paths.append(image_filename) pdf_document.close() return image_paths def extract_text_from_image(image_path): """ 使用OCR从图像中提取文本 参数: image_path: 图像文件路径 返回: 提取的文本内容 """ # 打开图像 image = Image.open(image_path) # 使用pytesseract进行OCR text = pytesseract.image_to_string(image) return text def process_pdf_images_for_rag(pdf_path): """ 处理PDF中的图像并提取内容,用于RAG 参数: pdf_path: PDF文件路径 返回: 包含图像内容的字典列表 """ # 提取图像 image_paths = extract_images_from_pdf(pdf_path) image_contents = [] # 对每张图像进行OCR并提取文本 for img_path in image_paths: text = extract_text_from_image(img_path) image_contents.append({ "image_path": img_path, "text_content": text.strip() }) return image_contents # 1. 加载和处理文档 def load_documents(file_path): # 使用PyPDFLoader加载PDF文档 loader = PyPDFLoader(file_path) documents = loader.load() return documents def split_document(documents): # 分割文档为小块,便于检索,每个块约500字符,适合短文档;对于长文档可调整到1000 text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50) docs = text_splitter.split_documents(documents) return docs # 2. 创建向量存储 def create_vector_store(docs): # 使用HuggingFace的嵌入模型生成向量,all-MiniLM-L6-v2是一个轻量高效的嵌入模型,适合快速开发;生产环境可考虑更强的模型如all-mpnet-base-v2。 embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2") # 使用FAISS创建向量存储 vector_store = FAISS.from_documents(docs, embeddings) return vector_store # 3. 初始化语言模型 def initialize_llm(): # 使用Hugging Face的生成模型(这里用distilgpt2作为示例),Demo中使用distilgpt2(轻量但生成质量一般);建议替换为gpt-neo-1.3B或LLaMA(需本地部署)。 # text_generation_pipeline = pipeline("text-generation", model="distilgpt2", max_length=200) # llm = HuggingFacePipeline(pipeline=text_generation_pipeline) myLLM = OllamaLLM(model="llama2") return myLLM # 4. 创建RAG链 def create_rag_chain(vector_store, llm): # 自定义提示模板,只要求简洁回答 prompt_template = """根据以下上下文,直接用中文回答问题,不要添加多余内容。 上下文: {context} 问题: {question} 回答: """ PROMPT = PromptTemplate(template=prompt_template, input_variables=["context", "question"]) # 创建RetrievalQA链 qa_chain = RetrievalQA.from_chain_type( llm=llm, chain_type="stuff", retriever=vector_store.as_retriever(search_kwargs={"k": 3}), return_source_documents=False, # 不返回来源文档 chain_type_kwargs={"prompt": PROMPT} # 使用自定义提示 ) return qa_chain # 5. 主函数 def main(): pytesseract.pytesseract.tesseract_cmd = 'tesseract.exe' pdf_file = Path('testdata') / 'RAG-TestImage-3.pdf' # 处理PDF中的图像 results = process_pdf_images_for_rag(pdf_file) # 打印结果 myStrings = [] for result in results: print(f"Image: {result['image_path']}") print(f"Extracted Text: {result['text_content']}") myStrings.append(result['text_content']) print("-" * 50) # 加载并分割文档 print("加载和分割文档...") # 将字符串内容认为是documents documents = [Document(page_content=s) for s in myStrings] # 分割文档(这是为了保持原来的逻辑和架构) docs=split_document(documents) # 创建向量存储 print("创建向量存储...") vector_store = create_vector_store(docs) # 初始化语言模型 print("初始化语言模型...") llm = initialize_llm() # 创建RAG链 print("创建RAG链...") rag_chain = create_rag_chain(vector_store, llm) # 示例查询 #query = "What is the main topic of the document?" query = "字形绘梦是哪个公司的产品?" print(f"查询: {query}") # 执行RAG查询,获取精准答案 #result = rag_chain({"query": query}) result = rag_chain.invoke({"query": query}) print(f"回答: {result['result'].strip()}") if __name__ == "__main__": main()
注意事项
- Tesseract配置:Windows用户需指定tesseract.exe路径,Linux/Mac用户确保Tesseract在PATH中。 On Windows 将 C:\Program Files\Tesseract-OCR 加入环境变量PATH中。
- 二进制安装文件从这里下载
download binary from https://github.com/UB-Mannheim/tesseract/wiki. then add pytesseract.pytesseract.tesseract_cmd = 'C:\Program Files (x86)\Tesseract-OCR\tesseract.exe'
to your script. 完整信息:https://github.com/UB-Mannheim/tesseract/wiki
- 语言支持:OCR默认使用英语,若需其他语言,需安装语言包并在image_to_string中指定(如lang=’chi_sim’表示简体中文)。
- 图像质量:低质量图像可能导致OCR结果不准确,可预处理图像(如增强对比度)。
. RAG中的应用
- 检索阶段:将text_content输入到向量数据库(如FAISS)中,构建索引。 在使用 FAISS(Facebook AI Similarity Search) 将字符串存入 embeddings 时,FAISS 本身并不直接处理字符串,而是操作数值型的向量(embeddings)。因此,你需要先将字符串转换为向量表示(通常使用预训练的嵌入模型,如 BERT、Word2Vec 或 SentenceTransformers),然后将这些向量存入 FAISS 索引中
- 生成阶段:将提取的文本作为上下文,提供给语言模型生成回答。
这个DEMO能解析图片。但是从图片读取的字符串效果不是很理想。
RA/SD 衍生者AI训练营