理解出错之处忘不吝指正。
简介
本文出自中科院自动化所,模式识别国重。
文章链接
代码链接
动机
使用Siamese结构做目标跟踪一直存在一个问题,即:当目标被遮挡、形变或其他原因,导致跟丢后,无法重新跟踪。作者认为,传统的SiamTrackers没有考虑时空连贯性。
贡献
- 本文是第一个在Siamese结构下使用图卷积做目标跟踪的方法,模型可以端到端的训练。
- 作者在Siamese网络中设计了ST-GCN和CT-GCN结构,前者可以对目标的时空信息进行建模,后者可以利用当前帧的上下文对特征进行自适应。
- 实验结果展示了本文方法的有效性,且可以做到实时。
方法
本文方法的整体结构如下图所示。可以看出,与传统的SiamTrackers不同的是,上分支中使用ST-GCN对目标的时空信息进行了建模,得到ST-Feature。对于当前跟踪帧,得到上下文特征Context Feature,使用CT-GCN得到自适应特征Adaptive Feature。最后,经过XCorr得到响应图。
ST-GCN和CT-GCN是本文的核心,前者负责编码目标的时空特征,后者根据目标状态对特征进行自适应,二者的网络结构如下图所示。
实验
在OTB-2013数据集上做的消融实验:
在OTB数据集上的实验结果:
在VOT2017上的实验结果:
在VOT2017 real-time上的实验结果:
在UAV123上的实验结果:
从实验结果可以看出,其实本文方法在精度上达不到SOTA,这可能因为本文方法是基于SiamFC实现的,毕竟是2016年的论文,能够在现在和SOTA一战已经很不错了。另一点,本文是第一篇使用GCN的tracker,具有借鉴意义。