题意:
给出一个无向图的源点和每个边的容量,让你自己选择汇点,使得最大流最小,输出最大流。
思路:
用SW算法求一遍无向图的最小割即可,源点如果在S集合中,我们只要在T集合中随便找一个点当作汇点就可以得到想要的最大流,反之亦然。
代码:
#include<cstdio>
#include<cstring>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<string>
#include<queue>
#include<vector>
#include<map>
#include<stack>
#include<climits>
#include<sstream>
#include<algorithm>
using namespace std;
const int maxn=500;
int ww[maxn][maxn];
struct SW{
int n,g[maxn][maxn],b[maxn],dist[maxn];
void init(int nn,int w[maxn][maxn])
{
int i,j;
n=nn;
for(i=1;i<=n;i++)
for(j=1;j<=n;j++)
g[i][j]=w[i][j];
}
int Min_Cut_Phase(int ph,int &x,int &y)
{
int i,j,t;
b[t=1]=ph;
for(i=1;i<=n;i++)
if(b[i]!=ph)
dist[i]=g[1][i];
for(i=1;i<n;i++)
{
x=t;
for(t=0,j=1;j<=n;j++)
if(b[j]!=ph&&(!t||dist[j]>dist[t]))
t=j;
b[t]=ph;
for(j=1;j<=n;j++)
if(b[j]!=ph)
dist[j]+=g[t][j];
}
return y=t,dist[t];
}
void Merge(int x,int y)
{
int i;
if(x>y)
swap(x,y);
for(i=1;i<=n;i++)
if(i!=x&&i!=y)
g[i][x]+=g[i][y],g[x][i]+=g[i][y];
if(y==n)
return ;
for(i=1;i<n;i++)
if(i!=y)
{
swap(g[i][y],g[i][n]);
swap(g[y][i],g[n][i]);
}
}
int Min_Cut()
{
int i,ret=0x3fffffff,x,y;
memset(b,0,sizeof b);
for(i=1;n>1;++i,--n)
{
ret=min(ret,Min_Cut_Phase(i,x,y));
Merge(x,y);
}
return ret;
}
};
int main()
{
int n,m,src;
while(scanf("%d%d%d",&n,&m,&src)!=EOF)
{
if(!n&&!m&&!src)
return 0;
SW t;
memset(ww,0,sizeof ww);
for(int i=1;i<=m;i++)
{
int u,v,x;
scanf("%d%d%d",&u,&v,&x);
ww[u][v]+=x;
ww[v][u]+=x;
}
t.init(n,ww);
printf("%d\n",t.Min_Cut());
}
return 0;
}