hdu3691(无向图最小割的求解)

题意:

给出一个无向图的源点和每个边的容量,让你自己选择汇点,使得最大流最小,输出最大流。


思路:

用SW算法求一遍无向图的最小割即可,源点如果在S集合中,我们只要在T集合中随便找一个点当作汇点就可以得到想要的最大流,反之亦然。


代码:

#include<cstdio>
#include<cstring>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<string>
#include<queue>
#include<vector>
#include<map>
#include<stack>
#include<climits>
#include<sstream>
#include<algorithm>

using namespace std;

const int maxn=500;

int ww[maxn][maxn];
struct SW{
	int n,g[maxn][maxn],b[maxn],dist[maxn];
	void init(int nn,int w[maxn][maxn])
	{
		int i,j;
		n=nn;
		for(i=1;i<=n;i++)
			for(j=1;j<=n;j++)
				g[i][j]=w[i][j];
	}

	int Min_Cut_Phase(int ph,int &x,int &y)
	{
		int i,j,t;
		b[t=1]=ph;
		for(i=1;i<=n;i++)
			if(b[i]!=ph)
				dist[i]=g[1][i];
		for(i=1;i<n;i++)
		{
			x=t;
			for(t=0,j=1;j<=n;j++)
				if(b[j]!=ph&&(!t||dist[j]>dist[t]))
					t=j;
			b[t]=ph;
			for(j=1;j<=n;j++)
				if(b[j]!=ph)
					dist[j]+=g[t][j];
		}
		return y=t,dist[t];
	}

	void Merge(int x,int y)
	{
		int i;
		if(x>y)
			swap(x,y);
		for(i=1;i<=n;i++)
			if(i!=x&&i!=y)
				g[i][x]+=g[i][y],g[x][i]+=g[i][y];
		if(y==n)
			return ;
		for(i=1;i<n;i++)
			if(i!=y)
			{
				swap(g[i][y],g[i][n]);
				swap(g[y][i],g[n][i]);
			}
	}

	int Min_Cut()
	{
		int i,ret=0x3fffffff,x,y;
		memset(b,0,sizeof b);
		for(i=1;n>1;++i,--n)
		{
			ret=min(ret,Min_Cut_Phase(i,x,y));
			Merge(x,y);
		}
		return ret;
	}
};

int main()
{
	int n,m,src;
	while(scanf("%d%d%d",&n,&m,&src)!=EOF)
	{
		if(!n&&!m&&!src)
			return 0;
		SW t;
		memset(ww,0,sizeof ww);
		for(int i=1;i<=m;i++)
		{
			int u,v,x;
			scanf("%d%d%d",&u,&v,&x);
			ww[u][v]+=x;
			ww[v][u]+=x;
		}
		t.init(n,ww);
		printf("%d\n",t.Min_Cut());
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值