理解出错之处望不吝指正。
本文中提到,待跟踪物体周围的环境对跟踪性能有很大的影响。如果当前周围特别杂乱,想要完成高质量的跟踪,context信息就显得十分重要了。作者提出了CA模型(其实可以当做一个模块,因为可以将其加入任何CF based tracker),可以在CF tracker中显示的结合global context。
本文CF和传统CF的对比图如下:
-
回顾传统CF
目标函数:
这里表示经过循环移位得到的矩阵,我们使用表示给定的image patch(即的第一行)。
原始域:
使梯度为0,可解的封闭解:,在傅里叶域可以快速实现矩阵的转置,我们可在傅里叶域得到:
这里的代表傅里叶变换,代表共轭。
检测时如下(代表下一帧的image patch,代表循环矩阵):
对偶域:
通过使,可得封闭解:,在傅里叶域:
检测时如下:
循环矩阵恒等式(下文会用到):
-
本文中的CF
-
单通道特征时:
目标函数:
其实本文创新点就在于这个目标函数,下面解释一下它。这里我们前面解释过了,表示对于给定的image patch 经过循环移位得到的矩阵。那么呢?对于每一帧,我们在周围进行采样(具体的采样策略在文末会有介绍),得到(其实就是将他们当做困难负样本去训练模型的鲁棒性),我们将他们个称为context patch。对于每个context patch,进行循环移位得到。
对于在损失函数中的贡献我们可以一目了然,就是想让他们的响应越小越好。其实可以将它们使用其他的正则项形式加入目标函数,为什么选择了上式中的呢?作者说:这样我们学到的是让context patch的响应比image patch的响应低,而不是想让context patch的响应变为0。
原始域:
首先我们可以将目标函数进行一下变化(好巧妙啊),令:
这样,目标函数就可变为:
另其梯度为0,可求得封闭解:
使用类似于传统CF中的方法,在傅里叶域的封闭解为:
检测时和传统CF的一样:
对偶域:
在原始域中的封闭解的形式和标准岭回归一样,所以我们可得封闭解:
使用循环矩阵恒等式可以得出傅里叶域的解:
这里的向量经过如下计算得到:
由于每一个向量都是一个维向量,且中的所有块都是对角矩阵,我们可以将的计算分割为个矩阵进行并行计算:
检测时:
-
多通道特征时:
目标函数:
在单通道特征时,的大小是,其中代表的是一个image patch和个context patch。
对于多通道特征图,我们用大小为的矩阵代替,这里的代表特征通道数,也就是说,矩阵的行代表patches,列代表features。
目标函数变为:
原始域:
和前文一样,通过使梯度为0可得:
使用循环矩阵恒等式得到:
这里的由下式计算得到:
这里也可以使用上文中提到的分块矩阵并行计算。
检测时,几乎和传统CF中一样,只不过和的维度要翻m倍。
对偶域:
首先得到封闭解:
使用循环矩阵恒等式得到:
这里的向量通过下式计算得出:
这里也可以使用上文中提到的分块矩阵并行计算。
检测时(化简后最终得到):
采样策略
在那些在响应图中远离峰值、响应值也很大的位置进行采样,目的是降低这些位置的响应值。