CVPR 2017 CA:《Context-Aware Correlation Filter Tracking》论文笔记

  理解出错之处望不吝指正。

  本文中提到,待跟踪物体周围的环境对跟踪性能有很大的影响。如果当前周围特别杂乱,想要完成高质量的跟踪,context信息就显得十分重要了。作者提出了CA模型(其实可以当做一个模块,因为可以将其加入任何CF based tracker),可以在CF tracker中显示的结合global context。

  本文CF和传统CF的对比图如下:

 

  •   回顾传统CF

  目标函数:

     

    这里A_0表示经过循环移位得到的矩阵,我们使用a_0表示给定的image patch(即A_0的第一行)。

  原始域:

    使梯度为0,可解的封闭解:w=(A_{0}^{T}A_{0}+\lambda _{1}I)^{-1}A_{0}^{T}y,在傅里叶域可以快速实现矩阵的转置,我们可在傅里叶域得到:

     

    这里的\hat{w}代表傅里叶变换,*代表共轭。

    检测时如下(z代表下一帧的image patch,Z代表循环矩阵):

     

  对偶域:

    通过使w=A_{0}^{T}\alpha,可得封闭解:\alpha =(A_{0}A_{0}^{T})^{-1}y,在傅里叶域:

     

    检测时如下:

     

  循环矩阵恒等式(下文会用到):

     

 

  •   本文中的CF

  •   单通道特征时:

  目标函数:

   

    其实本文创新点就在于这个目标函数,下面解释一下它。这里A_0我们前面解释过了,表示对于给定的image patch a_0经过循环移位得到的矩阵。那么A_{1},A_{2},...,A_k呢?对于每一帧,我们在a_0周围进行采样(具体的采样策略在文末会有介绍),得到a_{1},a_{2},...,a_k(其实就是将他们当做困难负样本去训练模型的鲁棒性),我们将他们k个称为context patch。对于每个context patch,进行循环移位得到A_{1},A_{2},...,A_k

    对于A_{1},A_{2},...,A_k在损失函数中的贡献我们可以一目了然,就是想让他们的响应越小越好。其实可以将它们使用其他的正则项形式加入目标函数,为什么选择了上式中的呢?作者说:这样我们学到的是让context patch的响应比image patch的响应低,而不是想让context patch的响应变为0。

  原始域:

    首先我们可以将目标函数进行一下变化(好巧妙啊),令:

     

    这样,目标函数就可变为:

     

    另其梯度为0,可求得封闭解:

     

    使用类似于传统CF中的方法,在傅里叶域的封闭解为:

     

    检测时和传统CF的一样:

     

  对偶域:

    在原始域中w的封闭解的形式和标准岭回归一样,所以我们可得封闭解:

     

    使用循环矩阵恒等式可以得出傅里叶域的解:

     

    这里的向量d_{jl}(j,l\in \left \{ 1,2,...,k\left. \right \} \right.)经过如下计算得到:

     

    由于每一个向量d_{jl}都是一个n维向量,且\hat{\alpha }中的所有块都是对角矩阵,我们可以将\hat{\alpha }的计算分割为n个矩阵进行并行计算:

     

    检测时:

     

  •   多通道特征时:

  目标函数:

    在单通道特征时,B的大小是(k+1)n\times n,其中k+1代表的是一个image patch和k个context patch。

    对于多通道特征图,我们用大小为(k+1)n\times nm的矩阵\bar{B}代替B,这里的m代表特征通道数,也就是说,矩阵\bar{B}的行代表patches,列代表features。

    目标函数变为:

     

  原始域:

    和前文一样,通过使梯度为0可得:

     

    使用循环矩阵恒等式得到:

     

    这里的C由下式计算得到:

     

    这里也可以使用上文中提到的分块矩阵并行计算。

    检测时,几乎和传统CF中一样,只不过zw的维度要翻m倍。

  对偶域:

    首先得到封闭解:

     

    使用循环矩阵恒等式得到:

     

    这里的向量d通过下式计算得出:

     

    这里也可以使用上文中提到的分块矩阵并行计算。

    检测时(化简后最终得到):

     

 

  采样策略

  在那些在响应图中远离峰值响应值也很大的位置进行采样,目的是降低这些位置的响应值。

     

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值