整理:4篇论文告诉你KAN网络在不同领域的应用(如时间序列分析、图学习任务和卷积神经网络的改进)

KAN(Kolmogorov-Arnold Networks)是一种新型的深度学习模型,它在时间序列、图结构和卷积等领域展现出了巨大的潜力和优势。与传统的MLP(多层感知器)相比,KAN网络的核心特点在于其将激活函数放置在网络的边缘(权重上),并且这些激活函数是可学习的,通常使用B样条(B-splines)进行参数化。这种设计使得KAN网络在处理复杂函数拟合、偏微分方程求解等方面具有更高的准确性和可解释性。在时间序列预测方面,KAN网络通过学习数据中的复杂关系和非线性模式,能够提供更准确的预测结果。例如,通过将KAN网络与LSTM、GRU或Transformer等模型结合,可以构建出更强大的时间序列预测模型,这些模型不仅能够处理多特征输入,还能进行多步预测,为各种实际应用提供了有效的解决方案。在图结构领域,KAN网络可以与图卷积网络(GCN)等结构结合,利用其强大的非线性激活函数来捕捉节点间的复杂关系,从而在节点分类、图分类等任务中取得更好的性能。在卷积领域,KAN网络的引入为卷积神经网络(CNN)带来了新的活力。通过将KAN的非线性激活函数集成到卷积操作中,可以构建出新的层,如CKAN(Convolutional Kolmogorov-Arnold Networks),这不仅提高了模型的表达能力,还减少了参数数量,提高了优化效率。

我们整理了有关 KAN 在上述领域最新应用的论文,这些研究深入探讨了KAN在人工智能应用中的广泛适用性和强大的性能。

论文1 KAN: Kolmogorov–Arnold Networks

方法:

本文提出了一种全新的神经网络结构——Kolmogorov-Arnold Networks(KANs),旨在通过在网络边缘(而非传统的节点)引入可学习的激活函数,显著提升模型的准确性和可解释性。深度学习模型,尤其是多层感知器(MLPs),广泛应用于非线性函数的逼近任务。然而,MLPs在可解释性和参数效率方面存在明显的不足。传统的MLPs依赖于固定的激活函数,这不仅限制了模型的灵活性,还使得其内部机制难以解读。尽管研究者们尝试通过后处理分析工具来改善MLPs的可解释性,这些方法往往需要额外的步骤,并无法从根本上解决问题。相比之下,KANs通过在网络边缘引入参数化的可学习激活函数(基于样条函数),直接在模型设计阶段解决了这些问题,从而实现了更高的可解释性和模型性能的提升。

图片

创新点:

(1) 受到Kolmogorov-Arnold表示定理的启发,提出KANs作为一种替代MLPs的模型,旨在通过在边缘上放置可学习的激活函数来提高模型的准确性和可解释性。

(2) KANs的设计允许模型在保持完全连接结构的同时,通过学习激活函数来更好地捕捉和表示高维数据中的复杂关系。

(3) 通过实验,作者展示了KANs在小规模AI+Science任务中相较于MLPs在准确性和可解释性方面的优势,特别是在数学和物理定律的发现中,KANs能够作为科学家的有用“合作者”。

结果:

图片

论文2 Kolmogorov-Arnold Networks (KANs) for Time Series Analysis

方法:

本文介绍了一种新颖的Kolmogorov-Arnold Networks(KANs)在时间序列预测中的应用,重点展示了其通过自适应激活函数增强预测模型性能的独特优势。时间序列预测在金融、经济、医学、气象学和生物学等领域至关重要,涉及从历史数据中推测未来趋势。传统预测方法,如自回归(AR)、ARIMA等模型,通常依赖领域特定的参数设置,尽管它们因效率和可解释性而广受欢迎。现代机器学习技术则通过数据驱动的方法识别时间模式,在深度学习的推动下,神经网络、长短期记忆(LSTM)网络等模型在时间序列预测中取得了显著成效。然而,传统多层感知器(MLP)尽管成功应用于许多领域,却在可扩展性和可解释性方面存在局限性。KANs作为一种创新的神经网络架构,基于Kolmogorov-Arnold表示定理,通过将线性权重替换为基于样条的自适应单变量函数,使得网络能够动态学习和优化激活模式。本文旨在评估KANs在实际时间序列预测中的应用潜力,分析其在可训练参数数量和预测精度方面与传统MLP的对比表现,探讨其在复杂时间序列应用中的优势。

图片

创新点:

(1) KANs利用样条函数作为激活函数,能够根据时间序列数据的动态特性自适应地调整激活模式,这与传统的固定激活函数相比,可以更精确地捕捉时间序列中的复杂模式和变化。

(2) KANs通过减少模型中的参数数量,实现了对时间序列数据的有效预测。这种优化使得模型更加简洁,同时保持或提高了预测精度,这对于处理大规模时间序列数据尤为重要。

(3) 通过实际的卫星流量预测任务验证了KANs相比于传统MLPs在预测精度上的提升。KANs能够更准确地预测未来的时间序列值,这对于需要高精度预测的领域如金融市场分析、气象预测等具有显著的应用价值。

结果:

图片

论文3 KAGNNs: Kolmogorov-Arnold Networks meet Graph Learning

方法:

本文提出了一种新型的图神经网络(GNN)架构,将Kolmogorov-Arnold Networks(KANs)应用于图学习任务中,替代传统的多层感知器(MLPs),并在图回归任务中表现出显著优势。图神经网络(GNNs)已成为学习节点和图表示的主流工具,大多数GNNs由一系列邻域聚合层(即消息传递层)组成,这些层通过聚合和转换节点的邻居表示来更新每个节点的表示。尽管MLPs因其通用逼近能力在提升消息传递GNNs表达能力方面占据主导地位,但它们也存在一些显著的局限性,如非凸损失函数、缺乏收敛保证的算法以及可解释性不足。这些局限性促使研究人员引入了基于Kolmogorov-Arnold表示定理的KANs,作为MLPs的替代方案。本研究通过广泛的实验,比较了KANs与MLPs在图学习任务中的性能,特别是在节点分类、图分类和图回归数据集上的表现,探讨了KANs在不同任务中的潜在优势。

图片

创新点:

(1) 受到Kolmogorov-Arnold表示定理的启发,提出KANs作为一种替代MLPs的模型,旨在通过在边缘上放置可学习的激活函数来提高模型的准确性和可解释性。

(2) KANs的设计允许模型在保持完全连接结构的同时,通过学习激活函数来更好地捕捉和表示高维数据中的复杂关系。

(3) 通过实验,作者展示了KANs在小规模AI+Science任务中相较于MLPs在准确性和可解释性方面的优势,特别是在数学和物理定律的发现中,KANs能够作为科学家的有用“合作者”。

结果:

图片

论文4 KAN: Kolmogorov–Arnold Networks

方法:

深度学习领域的持续发展带来了各种新架构,推动了计算机视觉在复杂空间数据处理上的进步。卷积神经网络(CNNs)因其在处理高维数据(如图像)方面的卓越表现而广泛应用。然而,传统的CNN主要依赖于卷积层中的线性变换和激活函数来理解空间关系,这在参数数量和模型复杂性上的优化存在一定限制。尽管这些方法有效,但传统CNN通常使用固定的激活函数和线性变换,限制了进一步优化的可能性。KANs通过集成样条构建网络架构,提供了更大的灵活性和减少参数复杂性的优势。本文旨在探索将KANs引入卷积层,这是一种在计算机视觉任务中广泛使用的关键结构。通过使用基于样条的卷积层,网络能够更有效地捕捉数据中的非线性关系,同时减少参数数量,从而在保持与传统模型相当的准确度的同时,提升神经网络的整体优化性能。

图片

创新点:

(1) 将KANs中的非线性激活函数集成到卷积操作中,创建了一种新型的卷积层。这种卷积层与传统CNN中的线性变换和固定激活函数不同,它使用可学习的样条函数作为激活函数,提高了网络对复杂数据模式的适应性和表达能力。

(2) 在Convolutional KANs中,卷积核的每个元素都是一个可学习的非线性函数,利用B样条实现。与传统CNN中的权重矩阵不同,这种基于样条的卷积核能够更平滑地表示任意激活函数,从而在保持准确性的同时减少了所需的参数数量。

(3) Convolutional KANs在参数数量上具有显著优势,这得益于其结构设计。由于B样条能够灵活地表示复杂的函数形状,因此网络能够以更少的参数捕获空间信息,减少了全连接层的使用,这些全连接层通常会大幅增加模型的参数数量。这种设计使得Convolutional KANs在参数减少的情况下,依然能够与传统CNN架构竞争性能

结果:

图片

  • 17
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
KAN(Knowledge-Aware Neural Network)神经网络是一种结合了领域知识和深度学习技术的模型,它旨在提高模型的泛化能力和解释性。在KAN中,领域知识被编码为结构化的知识谱,然后与传统的神经网络模型结合起来,通常是在模型的输入、隐藏层或输出阶段。 KAN网络的基础包括以下几个关键组件: 1. **知识嵌入**:将知识谱中的实体和关系转化为可训练的向量表示,这些向量反映了实体之间的关系模式。 2. **融合模块**:设计用于融合领域知识和原始输入特征的模块,如注意力机制或专门的融合层,使模型能够动态地利用知识。 3. **知识注入**:将知识谱信息集成到神经网络的计算流程中,这可能通过与输入数据相加、作为条件输入,或者作为额外的损失函数等方法实现。 4. **训练策略**:通常使用端到端的学习方法,同时优化模型的预测性能和对知识谱的遵守程度,以保持知识的完整性。 下面是KAN神经网络的一个简单示例代码(Python,使用PyTorch框架): ```python import torch from torch_geometric.nn import KnowledgeGraphEmbedding class KANModel(torch.nn.Module): def __init__(self, num_nodes, embedding_dim, knowledge_graph): super(KANModel, self).__init__() self.kg_embedding = KnowledgeGraphEmbedding(knowledge_graph, embedding_dim) self.main_network = torch.nn.Linear(embedding_dim + num_nodes, out_features) # 假设out_features是你想要的输出维度 def forward(self, x, edge_index, knowledge_indices): # x: 输入节点特征 # edge_index: 边的关系矩阵 # knowledge_indices: 知识谱中的实体对应于输入节点的索引 node_embeddings = self.kg_embedding(knowledge_indices) # 获取知识谱的嵌入 combined_features = torch.cat([x, node_embeddings], dim=1) # 混合输入特征和知识嵌入 output = self.main_network(combined_features) # 通过主网络计算输出 return output # 使用示例 model = KANModel(num_nodes, embedding_dim, knowledge_graph) inputs = (node_features, edge_index, knowledge_indices) output = model(inputs) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值