2025年还在用KAN网络的也是神人了...

自从KAN的原始论文发表,相关研究就层出不穷,比如前段时间港中文提出的很有代表性的U-KAN,在准确性以及计算成本方面遥遥领先。

还有刚公布录用的ICASSP 2025,其中关于KAN的创新成果更是不少。Nature子刊以及IEEE上也有优秀成果陆续发表,比如CKANs模型、PIKANs架构...可见KAN在今年依然是研究热点。

从这些成果来看,目前关于KAN的创新大多都从模型改进(如动态门控)、跨领域应用(如材料学)、工具开发等角度切入,大家找idea也建议从这些开始,需要参考可直接看我整理好的16篇KAN相关的2025新论文,基本都有开源代码。

值得一提的是,鉴于KAN的理论创新性和应用广泛性,它有望在未来AI4Science的时代占据重要地位。感兴趣的同学速速上车。

全部论文+开源代码需要的同学看文末

U-KAN Makes Strong Backbone for Medical Image Segmentation and Generation

方法:论文提出了一种结合了KANs的新型U-Net架构(U-KAN),通过在U-Net中引入KAN层,增强了模型对医学图像的分割和生成能力,同时提高了效率和可解释性。

创新点:

  • 提出了一种新的U-KAN框架,首次将KANs的优势整合到U-Net架构中,显著提升了医学图像分割和生成任务的性能。

  • 提出了一个创新的Tokenized KAN块,能够将KAN操作与现有的基于卷积的设计有效结合,使得KAN能够处理图像分割中的中间特征表示。

  • 实验验证了U-KAN在多个医学图像分割基准测试中的优越性能,以及KAN在提高网络效率和可解释性方面的巨大价值。

Physics-Informed Kolmogorov-Arnold Networks for Power System Dynamics

方法:论文提出了一种新的方法PIKANs,用于电力系统动态建模。它首次将KANs引入电力系统,利用其可学习的激活函数和高效逼近能力,替代传统MLP架构。通过将电力系统的物理模型嵌入网络训练,PIKANs在减少训练数据依赖的同时,以更小的网络规模实现了更高的预测精度,并能准确识别系统参数。

创新点:

  • 首次将KANs应用于电力系统动态建模,开发出PIKANs,替代传统MLP架构,显著减少网络规模和训练数据需求。

  • PIKANs以更小的网络规模实现更高精度,准确预测电力系统动态并识别惯性和阻尼系数。

  • 通过物理模型嵌入训练过程,PIKANs大幅减少对大规模训练数据的依赖,提升计算效率。

Color Matching Using Hypernetwork-Based Kolmogorov-Arnold Networks

方法:论文提出了一种基于KANs的颜色匹配框架cmKAN。它通过超网络生成空间变化的权重图来控制 KAN 的非线性样条,实现源图像颜色到目标图像颜色的精确匹配,同时引入大规模数据集进行验证,展示了其在多种任务中的优越性能和轻量级特性。

创新点:

  • 首次将KAN应用于颜色匹配,利用其样条非线性特性实现高精度的颜色映射。

  • 设计轻量级生成器,预测空间变化的KAN参数,提升颜色匹配的适应性和效率。

  • 创建大规模成对图像数据集,支持颜色匹配方法的训练和评估。

Kolmogorov-Arnold Network for Remote Sensing Image Semantic Segmentation

方法:论文提出了一种名为DeepKANSeg的遥感图像语义分割网络,创新性地引入了KAN模块。DeepKAN模块用于提取高维特征中的复杂语义信息,GLKAN模块用于恢复语义细节,显著提升了分割精度和模型可解释性。

创新点:

  • 提出基于KAN的深度特征精炼模块DeepKAN,通过非线性操作高效提取高维特征中的复杂语义信息。

  • 引入基于KAN的GLKAN模块替代传统MLP,增强解码器恢复语义细节的能力。

  • DeepKANSeg网络在高分辨率遥感数据集上表现出色,优于现有先进方法,同时提高了模型的可解释性。

关注下方《学姐带你玩AI》🚀🚀🚀

回复“222”获取全部方案+开源代码

码字不易,欢迎大家点赞评论收藏

<think>好的,我现在需要帮助用户查找与KAN图片相关的资源或信息,特别是关于格式或查看器的内容。首先,我需要回顾用户提供的引用内容,看看是否有相关的信息。 用户提供的引用中有四个来源。引用[1]提到了KAN 2.0,即Kolmogorov-Arnold网络,可能涉及相关的科学应用,但没有直接提到图片格式或查看器。引用[2]和[3]涉及到PyTorch模型的使用和项目结构,其中引用[3]的项目地址可能包含相关资源。引用[4]是一个百度论坛的链接,可能包含社区讨论的信息。 接下来,我需要考虑用户的问题:“KAN 图片 格式 OR KAN 图片 查看器”。这里的KAN可能指代不同的内容,比如Kolmogorov-Arnold Networks相关的图片,或者是某种特定格式的图片文件。用户可能在使用KAN模型时遇到了需要查看相关图片的情况,或者有特定格式的图片需要处理。 首先,我需要确认KAN是否指代某种图片格式。通常,常见的图片格式如PNG、JPEG等,但KAN可能是一个特定项目或工具使用的专有格式。根据引用[3]中的项目地址,可能存在与KAN相关的自定义图片处理工具或格式。因此,建议用户查看该项目的文档或代码仓库,了解是否有相关的图片格式说明或查看器工具。 其次,引用[2]中提到了使用PIL库处理图片,可能KAN项目在图像处理中使用特定的预处理步骤,但并未提及专门的查看器。如果用户需要处理模型训练中的图片,可能需要按照引用[2]中的步骤使用PIL和transforms进行处理,但这可能不是用户所需的查看器。 另外,用户可能需要的是KAN模型生成的图片,比如可视化结果。在这种情况下,建议用户参考项目文档,查看是否有生成或可视化图片的工具。例如,许多机器学习项目会提供脚本或工具来可视化网络结构或输出结果,这可能涉及特定格式的图片。 最后,用户提到的百度论坛链接(引用[4])可能包含社区成员讨论的KAN相关资源,可能有其他用户分享过查看器工具或处理KAN图片的方法。建议用户访问该链接,搜索相关讨论。 总结可能的解决方案:1. 检查KAN项目的官方文档或代码仓库(引用[3])获取图片格式和工具;2. 使用通用图片查看器尝试打开,若为专有格式可能需要转换;3. 查阅社区论坛(引用[4])寻求帮助;4. 根据引用[2]中的方法处理图片,但可能不涉及查看器。 在回答时,需要将这些步骤清晰地列出,并确保引用正确的来源。同时,生成相关问题以帮助用户进一步探索,如询问项目结构、处理KAN图片的方法等。</think>根据您提出的需求,以下是关于KAN图片资源及查看方式的系统化解决方案: ### 一、KAN图片资源获取渠道 1. **官方项目仓库** 访问引用[3]中提供的项目地址(https://gitcode.com/gh_mirrors/to/torch-conv-kan),查看`docs`或`examples`目录下的可视化案例。部分科研项目会在仓库中提供网络结构图、训练过程可视化结果等图片资源。 2. **论文配套材料** 查阅KAN 2.0相关论文的补充材料(如引用[1]),科研论文通常会提供网络架构图、性能对比图等高质量示意图,这些图片多采用PDF/SVG矢量格式或PNG格式。 3. **开发者社区** 在引用[4]的百度开发者论坛中搜索关键词"KAN 可视化"或"KAN 图片",查看是否有开发者分享过可视化工具或资源链接。 ### 二、图片格式处理建议 1. **通用格式支持** 若图片为标准格式(PNG/JPG等),可直接使用: - 系统默认图片查看器 - 专业工具:Adobe Photoshop/GIMP - 科研工具:Matplotlib、ImageJ 2. **特殊格式处理** 若遇到`.kanviz`等专用格式: ```python # 示例:通过项目代码解析专有格式 from kan.visualization import load_kan_image image_data = load_kan_image("network.kanviz") image_data.render() # 生成可交互可视化界面 ``` *需确认具体项目是否提供类似API(参考引用[3]的代码结构)* ### 三、关键操作注意事项 1. **格式转换规范** 使用引用[2]中的图像处理流程时: ```python from PIL import Image img = Image.open("input.kanimg").convert("RGB") # 格式转换 img.save("output.png") # 转换为通用格式 ``` 2. **可视化开发指引** - 网络结构可视化推荐工具:Netron、TensorBoard - 特征图可视化需通过hook机制捕获中间层输出(引用[3]项目可能已包含相关示例)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值