在计算机视觉与多模态生成领域,音频驱动的说话人脸生成(Audio-driven Talking Face Generation)是一项极具前沿性的研究任务,旨在根据输入语音驱动静态图像或视频中的人脸做出自然、同步的说话动作。随着虚拟人、数字主播、影视制作和实时交互等应用场景的快速扩展,该技术的实际需求日益增长,并成为构建高保真数字人系统的关键组成部分。然而,该任务面临诸多挑战,包括面部表情与语音节奏的同步、头部运动的自然性、跨语言的泛化能力,以及在不同身份下保持高一致性的面部结构。此外,实时性和可控性也是制约其落地的重要因素。为了应对这些难题,研究者们提出了一系列具有创新性的模型结构与训练策略。近年来,随着深度生成模型,尤其是扩散模型(Diffusion Models)与可控生成技术的发展,音频驱动人脸生成取得了突破性进展。例如,ControlTalk 通过轻量化的适配策略和预训练渲染器,统一了图像与视频输入下的表情建模流程,支持精细的嘴形控制;Ditto 引入了去VAE化的显式运动空间,在保证实时性能的同时,实现了可控的高质量生成;而 MuseTalk 和 Talking-Gaussian 等方法,则分别从高效的推理结构和三维辐射场建模出发,进一步提升了生成的真实感与一致性。这些前沿技术共同推动了音频驱动说话人脸生成的发展,使其更加贴近真实人类交流的表现力,并为下一代智能交互系统奠定了坚实基础。
我们将深入探讨该方向的最新进展,分析当前所面临的技术瓶颈,并展示具有代表性的创新方法,进一步探索如何通过多模态深度学习技术,提升说话人脸生成系统的自然度、实时性与通用性。
论文1:
优点与创新:
- 提出了一个新的基于变形的框架TalkingGaussian,通过在持久的头结构上应用变形来合成高质量的3D说话头视频,避免了由于不准确的外观预测导致的“面部失真”问题。
- 提出了Face-Mouth Decomposition模块,通过分解冲突的学习任务来简化变形建模,从而提供准确的嘴部重建和唇形同步。
- 采用了3D高斯散点(3DGS)来保持头部的稳定几何结构和不变的外观,简化了面部运动的建模难度。
- 通过增量采样策略优化变形学习,避免了梯度消失问题,提高了生成视频的平滑性和真实性。
- 在自重建设置和唇形同步设置中均表现出色,特别是在跨性别和跨语言情况下展示了良好的泛化能力。
论文2:
优点与创新:
- Ditto通过显式的身份无关运动空间桥接了运动生成和逼真的神经渲染,替代了传统的VAE表示,显著降低了扩散学习的复杂性,同时实现了对合成说话头的精确控制。
- 提出了一种推理策略,联合优化音频特征提取、运动生成和视频合成三个关键组件,实现了流处理、实时推理和低首帧延迟,满足了交互应用(如AI助手)的功能性要求。
- 通过显式运动空间,Ditto能够实现对面部运动的细粒度控制,包括区域控制和幅度控制,提升了生成视频的真实感和细节表现。
- Ditto在保持高质量生成的同时间,实现了实时推理,显著优于现有方法在运动控制和实时性能方面的表现。
- 在音频条件的基础上,结合了关键点、情感标签和眼睛状态等多种辅助条件,提高了生成结果的一致性和可控性。
论文3:
优点与创新
- MuseTalk能够在保证实时推理能力的情况下生成256x256的高分辨率人脸图像。
- 通过变分自编码器(VAE)在潜在空间中生成口型同步目标,保持了高质量和快速推理。
- 采用U-Net结构在不同尺度上融合音频和视觉特征,提高了信息流动效率,保留了重要的视觉特征并增强了同步效果。
- 提出了一种新的采样策略,选择与目标头部姿势最接近的参考图像,确保模型专注于精细的嘴唇纹理。
- 通过调制输入信息量,优化了唇形同步精度,增强了音频和视觉之间的互信息。
- 在视觉保真度和唇形同步精度方面显著优于现有技术,为更高级的音频驱动视觉配音应用铺平了道路。
- 支持在NVIDIA Tesla V100上以超过30 FPS的速度在线生成256x256的人脸图像,具备实时应用的能力。
论文4:
优点与创新
- 提出了一个新的基于变形的框架TalkingGaussian,通过在持久的头结构上应用变形来合成高质量的3D说话头视频,避免了由于不准确的外观预测导致的“面部失真”问题。
- 提出了Face-Mouth Decomposition模块,通过分解冲突的学习任务来简化变形建模,从而提供准确的嘴部重建和唇形同步。
- 采用了3D高斯散点(3DGS)来保持头部的稳定几何结构和不变的外观,简化了面部运动的建模难度。
- 通过增量采样策略优化变形学习,避免了梯度消失问题,提高了生成视频的平滑性和真实性。
- 在自重建设置和唇形同步设置中均表现出色,特别是在跨性别和跨语言情况下展示了良好的泛化能力。