流体介质是由气体和液体抽象出来的的介质模型。其力学特征是,介质中相互接触的质团间有相互作用力,接触面微元上的相互作用力,大小正比微元面积,方向垂直于接触面微元,如图(1)所示。因而,面元上的受力与
间可用标量P联系:
;这个标量P就是流体中的压强。流体的这个力学特征是流体中只存在纵波的原因。流体的另一个特征,是物质空间分布的连续性,即,介质中质团连续分布无间隙。作为传播声波的流体介质,还有一个性质,就是可压缩性,即,质团在压力的作用下会发生体积的变化,由于质团的质量没变,因而,在压力的作用下会引起质团的质量密度变化。以上就是‘流体’的含义。理想流体的‘理想’二字的含义是指流体介质中质团的机械运动无机械能损耗,即,质团间无耗散作用力。
图1:流体中面元ds受力示意图
本文将依据理想流体遵循的基本物理规律,得到声场中某个声学量的空间、时间变化规律相互联系的方程,即波动方程。波动方程在研究声学问题中具有重要意义,它在数学上的描述了介质中质团振动的传播过程,同时也是定量计算声学问题的基础。
推导波动方程的过程是,根据物理学三个基本定律:质量守恒定律、能量守恒定律和动量守恒定律(牛顿第二定律);获得的流体中三个基本方程:连续性方程、状态方程和运动方程;在介质静止、均匀声波小振幅条件下,分布略去这三个基本方程中的二阶以上小量,获得三个任意两个基本声学量的线性关系方程;这三个线性关系方程联立,可得到任意一个基本声学量的波动方程。
连续性方程
依据质量守恒定律,推导出流体中的连续性方程;并在介质静止、均匀,声波小振幅条件下建立基本声学量和
之间的关系。
根据能量守恒定律,可推知,在连续介质中,如果流进与流出某一空间体积的流体质量不等,则必将引起改体积中介质密度的变化。
在介质中,任取一点,以
为中心作为一个立体框ABCDEFGH,其边长分别是dx,dy,dz,立体框包围的空间体积为
;间图2。分析介质流动引起立体框介质质量变化。
图2:推导连续性方程用示意图
设t时刻,介质质团流过M点的速度为,在直角坐标系下
可以写为:
;又若M点的密度为
;则,单位时间内流过M点且与流速
垂直的单位面积的介质质量,即M点的质量流通密度为:
;由此可知,单位时间内流出闭曲面S外的介质质量为:
式中取闭曲面S的外法线方向
(1)对流入流出立体框ABCDEFGH内质量的分析:
在dt时间段,通过x方向的两个面元ABCD与EFGH流出dxdydz框外的介质质量:先考虑dt时间段从ABCD面流出dxdydz框外的介质质量:
(1)
根据函数的微分关系,上式的