大白话ChatGPT技术

本文介绍了ChatGPT的架构设计,包括预训练、微调和推理部分,强调了大数据和分布式训练的重要性。直播还将探讨离线训练和在线推理架构,以及AI大模型的开发技能和企业实战案例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

▼最近直播超级多,预约保你有收获

今晚直播:ChatGPT架构设计与应用案例实践

 1

ChatGPT 架构设计剖析 

ChatGPT 总体架构由三大部分构成:预训练(Pre-training)架构、微调(Fine-tuning)架构、推理(Reasoning)架构。

其中预训练架构建立在 Transformer 神经网络基础上,构建出一个 Base Model,微调架构加入了10万级别的人工样本,微调 Base Model 得到 SFT Model, 并进一步使用奖励模型强化 SFT Model,训练完成。整个训练由于参数量和数据量比较大,需要采用分布式的离线架构。

一个好的大模型 = 80% 的数据 + 20% 的模型。

因此,ChatGPT 在训练之前需要做大量的数据工程工作,包括:数据抓取、数据清洗、数据样本构建、词表构建算法选择、词表大小构建等关键步骤和流程。

除了离线训练外,一旦模型确定训练好权重,实时的在线工程架构设计也变成至关重要。

那么,ChatGPT 分布式在线推理架构又是怎么实现的,怎么解决架构设计、架构选型、架构高可用、高性能、负载均衡、幂等、缓存等关键技术?

今晚20点直播告诉你,直播精彩看点:

1、ChatGPT 离线训练架构设计和实现

2、ChatGPT 在线推理架构设计和实现

3、ChatGPT 企业级应用案例实战

请同学点击下方按钮预约直播,咱们今晚20点直播见!

2

免费领取《AI 大模型技术系列直播课

我们梳理了下 AI 大模型的知识图谱,包括12项核心技能:大模型内核架构、大模型开发 API、开发框架、向量数据库、AI 编程、AI Agent、缓存、算力、RAG、大模型微调、大模型预训练、LLMOps 等。

51ec2a6d6380257fe489d0a03fe73220.png

为了帮助同学们掌握 AI 大模型开发技能,我们准备了一系列免费直播干货扫码全部领取

74b6576349b568852c74920a526c9ffa.png

END

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值