研究人员发现,人工智能模型在预测比利时啤酒在一个受欢迎的评论网站上获得的评级方面比人类专家更好。
作者: Rhiannon Williamsarchive page
发表日期:2024 年 3 月 26 日
酿造美味的啤酒是一项艰巨的任务。大型啤酒厂从员工中挑选数百名训练有素的品酒师来测试他们的新产品。但是运行这样的感官品尝小组是昂贵的,而且对什么味道好的看法可能是非常主观的。
如果人工智能可以帮助减轻负担呢?根据今天发表在《自然通讯》(Nature Communications)上的研究,新的人工智能模型不仅可以准确识别消费者对某种比利时啤酒的评价,还可以准确识别酿酒商应该添加哪种化合物来使啤酒味道更好。
这些模型可以帮助食品和饮料制造商开发新产品或调整现有配方以更好地适应消费者的口味,这有助于节省大量时间和金钱,而这些时间和金钱本来可以用于进行试验。
为了训练他们的人工智能模型,研究人员花了五年时间对 250 种商业啤酒进行化学分析,测量每种啤酒的化学特性和风味化合物,这决定了它的味道。
然后,研究人员将这些详细的分析与训练有素的品酒小组对啤酒的评估相结合 - 包括啤酒花,酵母和麦芽风味 - 以及从流行的在线平台 RateBeer 获取的 180,000 条相同啤酒的评论,对啤酒的味道,外观,香气和整体质量进行抽样评分。
这个大型数据集将化学数据与感官特征联系起来,用于训练 10 个机器学习模型,以准确预测啤酒的味道、气味和口感,以及消费者对啤酒给予高度评价的可能性。
为了比较模型,他们将数据拆分为训练集和测试集。一旦模型在训练集中的数据上进行训练,他们就会评估其预测测试集的能力。
研究人员发现,所有模型在预测啤酒从 RateBeer 获得的评级方面都优于训练有素的人类专家小组。
通过这些模型,研究人员能够确定有助于消费者欣赏啤酒的特定化合物:如果啤酒含有这些特定化合物,人们更有可能对啤酒给予高度评价。例如,这些模型预测,添加酸味酸啤酒中存在的乳酸可以通过使其他种类的啤酒味道更新鲜来改善它们。
“我们让模型分析这些啤酒,然后问他们’我们怎样才能让这些啤酒变得更好?'”鲁汶大学教授、VIB-KU 鲁汶微生物学中心主任 Kevin Verstrepen 说。“然后我们进去,通过添加风味化合物对啤酒进行了这些改变。瞧瞧,一旦我们进行了盲品,啤酒就会变得更好,更普遍地受到赞赏。”
他说,这项研究的一个令人兴奋的应用是,它可以用来制造更好的无酒精啤酒,这是饮料行业的一个重大挑战。研究人员利用该模型的预测,在一种无酒精啤酒中添加了一种化合物混合物,人类品尝者对这种啤酒的醇度和甜度的评价明显高于其前身。
这种类型的机器学习方法在探索食物质地和营养以及调整成分以适应不同人群方面也非常有用,华盛顿州立大学食品科学教授 Carolyn Ross 说,他没有参与这项研究。例如,老年人往往会发现复杂的质地或成分组合不那么吸引人,她说。
“我们可以在那里探索很多东西,尤其是当我们研究不同的人群并试图为他们提出特定的产品时,”她说。