InceptionV1
InceptionV2
import torch
import torch.nn as nn
import torch.nn.functional as F
# 定义GoogLeNet网络模型
class GoogLeNet(nn.Module):
# init():进行初始化,申明模型中各层的定义
# num_classes:需要分类的类别个数
# aux_logits:训练过程是否使用辅助分类器,init_weights:是否对网络进行权重初始化
def __init__(self, num_classes=1000, aux_logits=True, init_weights=False):
super(GoogLeNet, self).__init__()
self.aux_logits = aux_logits
self.conv1 = BasicConv2d(3, 64, kernel_size=7, stride=2, padding=3)
# ceil_mode=true时,将不够池化的数据自动补足NAN至kernel_size大小
self.maxpool1 = nn.MaxPool2d(3, stride=2, ceil_mode=True)
self.conv2 = BasicConv2d(64, 64, kernel_size=1)
self.conv3 = BasicConv2d(64, 192, kernel_size=3, padding=1)
self.maxpool2 = nn.MaxPool2d(3, stride=2, ceil_mode=True)
self.inception3a = Inception(192, 64, 96, 128, 16, 32, 32)
self.inception3b = Inception(256, 128, 128, 192, 32, 96, 64)
self.maxpool3 = nn.MaxPool2d(3, stride=2, ceil_mode=True)
self.inception4a = Inception(480, 192, 96, 208, 16, 48, 64)
self.inception4b = Inception(512, 160, 112, 224, 24, 64, 64)
self.inception4c = Inception(512, 128, 128, 256, 24, 64, 64)
self.inception4d = Inception(512, 112, 144, 288, 32, 64, 64)
self.inception4e = Inception(528, 256, 160, 320, 32, 128, 128)
self.maxpool4 = nn.MaxPool2d(3, stride=2, ceil_mode=True)
self.inception5a = Inception(832, 256, 160, 320, 32, 128, 128)
self.inception5b = Inception(832, 384, 192, 384, 48, 128, 128)
# 如果为真,则使用分类器
if self.aux_logits:
self.aux1 = InceptionAux(512, num_classes)
self.aux2 = InceptionAux(528, num_classes)
# AdaptiveAvgPool2d:自适应平均池化,指定输出(H,W)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.dropout = nn.Dropout(0.4)
self.fc = nn.Linear(1024, num_classes)
# 如果为真,则对网络参数进行初始化
if init_weights:
self._initialize_weights()
# forward():定义前向传播过程,描述了各层之间的连接关系
def forward(self, x):
# N x 3 x 224 x 224
x = self.conv1(x)
# N x 64 x 112 x 112
x = self.maxpool1(x)
# N x 64 x 56 x 56
x = self.conv2(x)
# N x 64 x 56 x 56
x = self.conv3(x)
# N x 192 x 56 x 56
x = self.maxpool2(x)
# N x 192 x 28 x 28
x = self.inception3a(x)
# N x 256 x 28 x 28
x = self.inception3b(x)
# N x 480 x 28 x 28
x = self.maxpool3(x)
# N x 480 x 14 x 14
x = self.inception4a(x)
# N x 512 x 14 x 14
# 设置.train()时为训练模式,self.training=True
if self.training and self.aux_logits:
aux1 = self.aux1(x)
x = self.inception4b(x)
# N x 512 x 14 x 14
x = self.inception4c(x)
# N x 512 x 14 x 14
x = self.inception4d(x)
# N x 528 x 14 x 14
if self.training and self.aux_logits:
aux2 = self.aux2(x)
x = self.inception4e(x)
# N x 832 x 14 x 14
x = self.maxpool4(x)
# N x 832 x 7 x 7
x = self.inception5a(x)
# N x 832 x 7 x 7
x = self.inception5b(x)
# N x 1024 x 7 x 7
x = self.avgpool(x)
# N x 1024 x 1 x 1
x = torch.flatten(x, 1)
# N x 1024
x = self.dropout(x)
x = self.fc(x)
# N x 1000 (num_classes)
if self.training and self.aux_logits:
return x, aux2, aux1
return x
# 网络结构参数初始化
def _initialize_weights(self):
# 遍历网络中的每一层
for m in self.modules():
# isinstance(object, type),如果指定的对象拥有指定的类型,则isinstance()函数返回True
# 如果是卷积层
if isinstance(m, nn.Conv2d):
# Kaiming正态分布方式的权重初始化
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
# 如果偏置不是0,将偏置置成0,对偏置进行初始化
if m.bias is not None:
# torch.nn.init.constant_(tensor, val),初始化整个矩阵为常数val
nn.init.constant_(m.bias, 0)
# 如果是全连接层
elif isinstance(m, nn.Linear):
# init.normal_(tensor, mean=0.0, std=1.0),使用从正态分布中提取的值填充输入张量
# 参数:tensor:一个n维Tensor,mean:正态分布的平均值,std:正态分布的标准差
nn.init.normal_(m.weight, 0, 0.01)
nn.init.constant_(m.bias, 0)
# 基础卷积层(卷积 + ReLU)
class BasicConv2d(nn.Module):
# init():进行初始化,申明模型中各层的定义
def __init__(self, in_channels, out_channels, **kwargs):
super(BasicConv2d, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels, **kwargs)
# ReLU(inplace=True):将tensor直接修改,不找变量做中间的传递,节省运算内存,不用多存储额外的变量
self.relu = nn.ReLU(inplace=True)
# 前向传播过程
def forward(self, x):
x = self.conv(x)
x = self.relu(x)
return x
# Inception结构
class Inception(nn.Module):
# init():进行初始化
def __init__(self, in_channels, ch1x1, ch3x3red, ch3x3, ch5x5red, ch5x5, pool_proj):
super(Inception, self).__init__()
# 分支1,单1x1卷积层
self.branch1 = BasicConv2d(in_channels, ch1x1, kernel_size=1)
# 分支2,1x1卷积层后接3x3卷积层
self.branch2 = nn.Sequential(
BasicConv2d(in_channels, ch3x3red, kernel_size=1),
# 保证输出大小等于输入大小
BasicConv2d(ch3x3red, ch3x3, kernel_size=3, padding=1)
)
# 分支3,1x1卷积层后接5x5卷积层
self.branch3 = nn.Sequential(
BasicConv2d(in_channels, ch5x5red, kernel_size=1),
# 保证输出大小等于输入大小
BasicConv2d(ch5x5red, ch5x5, kernel_size=5, padding=2)
)
# 分支4,3x3最大池化层后接1x1卷积层
self.branch4 = nn.Sequential(
nn.MaxPool2d(kernel_size=3, stride=1, padding=1),
BasicConv2d(in_channels, pool_proj, kernel_size=1)
)
# forward():定义前向传播过程,描述了各层之间的连接关系
def forward(self, x):
branch1 = self.branch1(x)
branch2 = self.branch2(x)
branch3 = self.branch3(x)
branch4 = self.branch4(x)
# 在通道维上连结输出
outputs = [branch1, branch2, branch3, branch4]
# cat():在给定维度上对输入的张量序列进行连接操作
return torch.cat(outputs, 1)
# 辅助分类器
class InceptionAux(nn.Module):
# init():进行初始化
def __init__(self, in_channels, num_classes):
super(InceptionAux, self).__init__()
self.averagePool = nn.AvgPool2d(kernel_size=5, stride=3)
self.conv = BasicConv2d(in_channels, 128, kernel_size=1)
# 上一层output[batch, 128, 4, 4],128X4X4=2048
self.fc1 = nn.Linear(2048, 1024)
self.fc2 = nn.Linear(1024, num_classes)
# 前向传播过程
def forward(self, x):
# 输入:分类器1:Nx512x14x14,分类器2:Nx528x14x14
x = self.averagePool(x)
# 输入:分类器1:Nx512x14x14,分类器2:Nx528x14x14
x = self.conv(x)
# 输入:N x 128 x 4 x 4
x = torch.flatten(x, 1)
# 设置.train()时为训练模式,self.training=True
x = F.dropout(x, 0.5, training=self.training)
# 输入:N x 2048
x = F.relu(self.fc1(x), inplace=True)
x = F.dropout(x, 0.5, training=self.training)
# 输入:N x 1024
x = self.fc2(x)
# 返回值:N*num_classes
return x